Variational autoencoders for collaborative filtering D Liang, RG Krishnan, MD Hoffman, T Jebara Proceedings of the 2018 World Wide Web Conference, 689-698, 2018 | 1282 | 2018 |
Structured Inference Networks for Nonlinear State Space Models RG Krishnan, U Shalit, D Sontag arXiv preprint arXiv:1609.09869, 2016 | 522 | 2016 |
Deep Kalman Filters RG Krishnan, U Shalit, D Sontag arXiv preprint arXiv:1511.05121, 2015 | 424 | 2015 |
Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning RJ Chen, C Chen, Y Li, TY Chen, AD Trister, RG Krishnan, F Mahmood Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 315 | 2022 |
On the challenges of learning with inference networks on sparse, high-dimensional data RG Krishnan, D Liang, MD Hoffman The 21st International Conference on Artificial Intelligence and Statistics, 2018 | 91 | 2018 |
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology RJ Chen, RG Krishnan arXiv preprint arXiv:2203.00585, 2022 | 68 | 2022 |
Clinical camel: An open-source expert-level medical language model with dialogue-based knowledge encoding A Toma, PR Lawler, J Ba, RG Krishnan, BB Rubin, B Wang arXiv preprint arXiv:2305.12031 1, 2023 | 54 | 2023 |
Barrier Frank-Wolfe for marginal inference RG Krishnan, S Lacoste-Julien, D Sontag Advances in Neural Information Processing Systems, 532-540, 2015 | 48 | 2015 |
Representation Learning Approaches to Detect False Arrhythmia Alarms from ECG Dynamics EP Lehman, RG Krishnan, X Zhao, RG Mark, HL Li-wei Machine Learning for Healthcare Conference, 571-586, 2018 | 31 | 2018 |
Early detection of diabetes from health claims R Krishnan, N Razavian, Y Choi, S Nigam, S Blecker, A Schmidt, ... Machine Learning in Healthcare Workshop, NIPS, 1-5, 2013 | 21 | 2013 |
Partial identification of treatment effects with implicit generative models V Balazadeh Meresht, V Syrgkanis, RG Krishnan Advances in Neural Information Processing Systems 35, 22816-22829, 2022 | 17* | 2022 |
Neural pharmacodynamic state space modeling ZM Hussain, RG Krishnan, D Sontag International Conference on Machine Learning, 4500-4510, 2021 | 14 | 2021 |
Machine learning in computational histopathology: Challenges and opportunities M Cooper, Z Ji, RG Krishnan Genes, Chromosomes and Cancer 62 (9), 540-556, 2023 | 12 | 2023 |
A Learning Based Hypothesis Test for Harmful Covariate Shift T Ginsberg, Z Liang, RG Krishnan arXiv preprint arXiv:2212.02742, 2022 | 12 | 2022 |
Clustering Interval-Censored Time-Series for Disease Phenotyping IY Chen, RG Krishnan, D Sontag Proceedings of the AAAI Conference on Artificial Intelligence 36 (6), 6211-6221, 2022 | 9 | 2022 |
Hierarchical Optimal Transport for Comparing Histopathology Datasets A Yeaton, RG Krishnan, R Mieloszyk, D Alvarez-Melis, G Huynh arXiv preprint arXiv:2204.08324, 2022 | 8 | 2022 |
Automated identification and quantification of traumatic brain injury from CT scans: Are we there yet? A Hibi, M Jaberipour, MD Cusimano, A Bilbily, RG Krishnan, RI Aviv, ... Medicine 101 (47), e31848, 2022 | 7 | 2022 |
Clinical camel: An open expert-level medical language model with dialogue-based knowledge encoding A Toma, PR Lawler, J Ba, RG Krishnan, BB Rubin, B Wang arXiv preprint arXiv:2305.12031, 2023 | 5 | 2023 |
HiCu: Leveraging Hierarchy for Curriculum Learning in Automated ICD Coding W Ren, R Zeng, T Wu, T Zhu, RG Krishnan Machine Learning for Healthcare Conference, 198-223, 2022 | 5 | 2022 |
Learning predictive checklists from continuous medical data Y Makhija, E De Brouwer, RG Krishnan arXiv preprint arXiv:2211.07076, 2022 | 5 | 2022 |