A new family of tight sets in {\ mathcal {Q}}^{+}(5, q) J De Beule, J Demeyer, K Metsch, M Rodgers Designs, Codes and Cryptography 78 (3), 655-678, 2016 | 55* | 2016 |
Cameron-Liebler k-classes in PG (2k+ 1, q) M Rodgers, L Storme, A Vansweevelt Combinatorica, 1-19, 2016 | 31 | 2016 |
Cameron–Liebler line classes M Rodgers Designs, Codes and Cryptography 68 (1-3), 33-37, 2013 | 26 | 2013 |
Cameron-Liebler line classes with parameter x=(q+ 1) 23 T Feng, K Momihara, M Rodgers, Q Xiang, H Zou Advances in Mathematics 385, 107780, 2021 | 23 | 2021 |
Cameron-Liebler sets of generators in finite classical polar spaces M De Boeck, M Rodgers, L Storme, A Švob Journal of Combinatorial Theory, Series A 167, 340-388, 2019 | 23 | 2019 |
On some new examples of Cameron-Liebler line classes MJ Rodgers University of Colorado at Denver, 2012 | 20 | 2012 |
Classification of 8-dimensional rank two commutative semifields M Lavrauw, M Rodgers Advances in Geometry 19 (1), 57-64, 2019 | 6 | 2019 |
Regular ovoids and Cameron-Liebler sets of generators in polar spaces M De Boeck, J D'haeseleer, M Rodgers arXiv preprint arXiv:2310.14739, 2023 | 3 | 2023 |
Regular sets of lines in rank 3 polar spaces F Ihringer, M Rodgers Finite Fields and Their Applications 103, 102569, 2025 | | 2025 |
Double k-sets in symplectic generalized quadrangles S Payne, M Rodgers Designs, Codes and Cryptography 72 (2), 265-271, 2014 | | 2014 |