关注
Jean Paul Barddal
Jean Paul Barddal
Programa de Pós-Graduação em Informática (PPGIa), Pontifícia Universidade Católica do Paraná
在 ppgia.pucpr.br 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Adaptive random forests for evolving data stream classification
HM Gomes, A Bifet, J Read, JP Barddal, F Enembreck, B Pfharinger, ...
Machine Learning 106, 1469-1495, 2017
7102017
A survey on ensemble learning for data stream classification
HM Gomes, JP Barddal, F Enembreck, A Bifet
ACM Computing Surveys (CSUR) 50 (2), 1-36, 2017
5922017
Machine learning for streaming data: state of the art, challenges, and opportunities
HM Gomes, J Read, A Bifet, JP Barddal, J Gama
ACM SIGKDD Explorations Newsletter 21 (2), 6-22, 2019
258*2019
A survey on feature drift adaptation: Definition, benchmark, challenges and future directions
JP Barddal, HM Gomes, F Enembreck, B Pfahringer
Journal of Systems and Software 127, 278-294, 2017
1172017
A survey on concept drift in process mining
DMV Sato, SC De Freitas, JP Barddal, EE Scalabrin
ACM Computing Surveys (CSUR) 54 (9), 1-38, 2021
792021
Adaptive random forests for data stream regression.
HM Gomes, JP Barddal, LEB Ferreira, A Bifet
ESANN, 2018
632018
Lessons learned from data stream classification applied to credit scoring
JP Barddal, L Loezer, F Enembreck, R Lanzuolo
Expert Systems With Applications 162, 113899, 2020
452020
On dynamic feature weighting for feature drifting data streams
JP Barddal, H Murilo Gomes, F Enembreck, B Pfahringer, A Bifet
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2016
442016
Boosting decision stumps for dynamic feature selection on data streams
JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer
Information Systems 83, 13-29, 2019
372019
Improving credit risk prediction in online peer-to-peer (p2p) lending using imbalanced learning techniques
LEB Ferreira, JP Barddal, HM Gomes, F Enembreck
2017 IEEE 29th International Conference on Tools with Artificial …, 2017
372017
SNCStream: A social network-based data stream clustering algorithm
JP Barddal, HM Gomes, F Enembreck
Proceedings of the 30th annual ACM symposium on applied computing, 935-940, 2015
362015
Merit-guided dynamic feature selection filter for data streams
JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer
Expert Systems with Applications 116, 227-242, 2019
352019
A survey on feature drift adaptation
JP Barddal, HM Gomes, F Enembreck
2015 IEEE 27th International Conference on Tools with Artificial …, 2015
322015
A systematic review on computer vision-based parking lot management applied on public datasets
PRL de Almeida, JH Alves, RS Parpinelli, JP Barddal
Expert Systems with Applications 198, 116731, 2022
282022
Cost-sensitive learning for imbalanced data streams
L Loezer, F Enembreck, JP Barddal, A de Souza Britto Jr
Proceedings of the 35th annual ACM symposium on applied computing, 498-504, 2020
282020
SFNClassifier: A scale-free social network method to handle concept drift
JP Barddal, HM Gomes, F Enembreck
Proceedings of the 29th Annual ACM Symposium on Applied Computing, 786-791, 2014
272014
SNCStream+: Extending a high quality true anytime data stream clustering algorithm
JP Barddal, HM Gomes, F Enembreck, JP Barthès
Information Systems 62, 60-73, 2016
232016
Analyzing the impact of feature drifts in streaming learning
JP Barddal, HM Gomes, F Enembreck
Neural Information Processing: 22nd International Conference, ICONIP 2015 …, 2015
232015
A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start
AD Viniski, JP Barddal, A de Souza Britto Jr, F Enembreck, ...
Expert Systems with Applications 176, 114890, 2021
202021
Hierarchical classification of data streams: a systematic literature review
E Tieppo, RR Santos, JP Barddal, JC Nievola
Artificial Intelligence Review 55 (4), 3243-3282, 2022
192022
系统目前无法执行此操作,请稍后再试。
文章 1–20