Adaptive random forests for evolving data stream classification HM Gomes, A Bifet, J Read, JP Barddal, F Enembreck, B Pfharinger, ... Machine Learning 106, 1469-1495, 2017 | 710 | 2017 |
A survey on ensemble learning for data stream classification HM Gomes, JP Barddal, F Enembreck, A Bifet ACM Computing Surveys (CSUR) 50 (2), 1-36, 2017 | 592 | 2017 |
Machine learning for streaming data: state of the art, challenges, and opportunities HM Gomes, J Read, A Bifet, JP Barddal, J Gama ACM SIGKDD Explorations Newsletter 21 (2), 6-22, 2019 | 258* | 2019 |
A survey on feature drift adaptation: Definition, benchmark, challenges and future directions JP Barddal, HM Gomes, F Enembreck, B Pfahringer Journal of Systems and Software 127, 278-294, 2017 | 117 | 2017 |
A survey on concept drift in process mining DMV Sato, SC De Freitas, JP Barddal, EE Scalabrin ACM Computing Surveys (CSUR) 54 (9), 1-38, 2021 | 79 | 2021 |
Adaptive random forests for data stream regression. HM Gomes, JP Barddal, LEB Ferreira, A Bifet ESANN, 2018 | 63 | 2018 |
Lessons learned from data stream classification applied to credit scoring JP Barddal, L Loezer, F Enembreck, R Lanzuolo Expert Systems With Applications 162, 113899, 2020 | 45 | 2020 |
On dynamic feature weighting for feature drifting data streams JP Barddal, H Murilo Gomes, F Enembreck, B Pfahringer, A Bifet Machine Learning and Knowledge Discovery in Databases: European Conference …, 2016 | 44 | 2016 |
Boosting decision stumps for dynamic feature selection on data streams JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer Information Systems 83, 13-29, 2019 | 37 | 2019 |
Improving credit risk prediction in online peer-to-peer (p2p) lending using imbalanced learning techniques LEB Ferreira, JP Barddal, HM Gomes, F Enembreck 2017 IEEE 29th International Conference on Tools with Artificial …, 2017 | 37 | 2017 |
SNCStream: A social network-based data stream clustering algorithm JP Barddal, HM Gomes, F Enembreck Proceedings of the 30th annual ACM symposium on applied computing, 935-940, 2015 | 36 | 2015 |
Merit-guided dynamic feature selection filter for data streams JP Barddal, F Enembreck, HM Gomes, A Bifet, B Pfahringer Expert Systems with Applications 116, 227-242, 2019 | 35 | 2019 |
A survey on feature drift adaptation JP Barddal, HM Gomes, F Enembreck 2015 IEEE 27th International Conference on Tools with Artificial …, 2015 | 32 | 2015 |
A systematic review on computer vision-based parking lot management applied on public datasets PRL de Almeida, JH Alves, RS Parpinelli, JP Barddal Expert Systems with Applications 198, 116731, 2022 | 28 | 2022 |
Cost-sensitive learning for imbalanced data streams L Loezer, F Enembreck, JP Barddal, A de Souza Britto Jr Proceedings of the 35th annual ACM symposium on applied computing, 498-504, 2020 | 28 | 2020 |
SFNClassifier: A scale-free social network method to handle concept drift JP Barddal, HM Gomes, F Enembreck Proceedings of the 29th Annual ACM Symposium on Applied Computing, 786-791, 2014 | 27 | 2014 |
SNCStream+: Extending a high quality true anytime data stream clustering algorithm JP Barddal, HM Gomes, F Enembreck, JP Barthès Information Systems 62, 60-73, 2016 | 23 | 2016 |
Analyzing the impact of feature drifts in streaming learning JP Barddal, HM Gomes, F Enembreck Neural Information Processing: 22nd International Conference, ICONIP 2015 …, 2015 | 23 | 2015 |
A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start AD Viniski, JP Barddal, A de Souza Britto Jr, F Enembreck, ... Expert Systems with Applications 176, 114890, 2021 | 20 | 2021 |
Hierarchical classification of data streams: a systematic literature review E Tieppo, RR Santos, JP Barddal, JC Nievola Artificial Intelligence Review 55 (4), 3243-3282, 2022 | 19 | 2022 |