FEAST: fast expectation-maximization for microbial source tracking L Shenhav, M Thompson, TA Joseph, L Briscoe, O Furman, D Bogumil, ... Nature methods 16 (7), 627-632, 2019 | 332 | 2019 |
Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics O Furman, L Shenhav, G Sasson, F Kokou, H Honig, S Jacoby, T Hertz, ... Nature communications 11 (1), 1904, 2020 | 144 | 2020 |
Efficacy of corneal collagen cross-linking for the treatment of keratoconus: a systematic review and meta-analysis Z Meiri, S Keren, A Rosenblatt, T Sarig, L Shenhav, D Varssano Cornea 35 (3), 417-428, 2016 | 130 | 2016 |
Genome-wide methylation data mirror ancestry information E Rahmani, L Shenhav, R Schweiger, P Yousefi, K Huen, B Eskenazi, ... Epigenetics & chromatin 10, 1-12, 2017 | 98 | 2017 |
Context-aware dimensionality reduction deconvolutes gut microbial community dynamics C Martino, L Shenhav, CA Marotz, G Armstrong, D McDonald, ... Nature biotechnology 39 (2), 165-168, 2021 | 74 | 2021 |
Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding SJ Song, J Wang, C Martino, L Jiang, WK Thompson, L Shenhav, ... Med 2 (8), 951-964. e5, 2021 | 58 | 2021 |
Compositional Lotka-Volterra describes microbial dynamics in the simplex TA Joseph, L Shenhav, JB Xavier, E Halperin, I Pe’er PLoS computational biology 16 (5), e1007917, 2020 | 57 | 2020 |
GLINT: a user-friendly toolset for the analysis of high-throughput DNA-methylation array data E Rahmani, R Yedidim, L Shenhav, R Schweiger, O Weissbrod, N Zaitlen, ... Bioinformatics 33 (12), 1870-1872, 2017 | 56 | 2017 |
BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference E Rahmani, R Schweiger, L Shenhav, T Wingert, I Hofer, E Gabel, E Eskin, ... Genome biology 19, 1-18, 2018 | 55 | 2018 |
Resource conservation manifests in the genetic code L Shenhav, D Zeevi Science 370 (6517), 683-687, 2020 | 50 | 2020 |
Modeling the temporal dynamics of the gut microbial community in adults and infants L Shenhav, O Furman, L Briscoe, M Thompson, JD Silverman, I Mizrahi, ... PLoS computational biology 15 (6), e1006960, 2019 | 48 | 2019 |
Re-examining the robustness of voice features in predicting depression: Compared with baseline of confounders W Pan, J Flint, L Shenhav, T Liu, M Liu, B Hu, T Zhu PloS one 14 (6), e0218172, 2019 | 40 | 2019 |
Microdiversity of the vaginal microbiome is associated with preterm birth J Liao, L Shenhav, JA Urban, M Serrano, B Zhu, GA Buck, T Korem Nature Communications 14 (1), 4997, 2023 | 17 | 2023 |
Using stochastic approximation techniques to efficiently construct confidence intervals for heritability R Schweiger, E Fisher, E Rahmani, L Shenhav, S Rosset, E Halperin Journal of Computational Biology 25 (7), 794-808, 2018 | 17 | 2018 |
Statistical considerations in the design and analysis of longitudinal microbiome studies JD Silverman, L Shenhav, E Halperin, S Mukherjee, LA David BioRxiv, 448332, 2018 | 16 | 2018 |
Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data GI Austin, H Park, Y Meydan, D Seeram, T Sezin, YC Lou, BA Firek, ... Nature Biotechnology 41 (12), 1820-1828, 2023 | 15 | 2023 |
Quantifying replicability and consistency in systematic reviews I Jaljuli, Y Benjamini, L Shenhav, OA Panagiotou, R Heller Statistics in Biopharmaceutical Research 15 (2), 372-385, 2023 | 12 | 2023 |
Using community ecology theory and computational microbiome methods to study human milk as a biological system L Shenhav, MB Azad Msystems 7 (1), e01132-21, 2022 | 9 | 2022 |
Quantifying replicability in systematic reviews: the r-value L Shenhav, R Heller, Y Benjamini arXiv preprint arXiv:1502.00088, 2015 | 7 | 2015 |
Compositionally aware phylogenetic beta-diversity measures better resolve microbiomes associated with phenotype C Martino, D McDonald, K Cantrell, AH Dilmore, Y Vázquez-Baeza, ... Msystems 7 (3), e00050-22, 2022 | 5 | 2022 |