Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle S Ruuska, W Hämäläinen, S Kajava, M Mughal, P Matilainen, J Mononen Behavioural processes 148, 56-62, 2018 | 277 | 2018 |
Comparison of machine learning methods for intelligent tutoring systems W Hämäläinen, M Vinni International conference on intelligent tutoring systems, 525-534, 2006 | 198 | 2006 |
Classifiers for educational data mining W Hämäläinen, M Vinni Handbook of Educational Data Mining, Chapman & Hall/CRC Data Mining and …, 2011 | 146* | 2011 |
Data mining in personalizing distance education courses W Hämäläinen, TH Laine, E Sutinen Data mining in e-learning, 157-171, 2006 | 108 | 2006 |
Efficient discovery of statistically significant association rules W Hämäläinen, M Nykänen 2008 Eighth IEEE international conference on data mining, 203-212, 2008 | 80 | 2008 |
Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures W Hämäläinen Knowledge and information systems 32, 383-414, 2012 | 69 | 2012 |
A tutorial on statistically sound pattern discovery W Hämäläinen, GI Webb Data Mining and Knowledge Discovery 32 (2), 325--377, 2019 | 62 | 2019 |
Jerk-based feature extraction for robust activity recognition from acceleration data W Hamäläinen, M Järvinen, P Martiskainen, J Mononen 2011 11th International Conference on Intelligent Systems Design and …, 2011 | 59 | 2011 |
StatApriori: an efficient algorithm for searching statistically significant association rules W Hämäläinen Knowledge and information systems 23, 373-399, 2010 | 55 | 2010 |
Problem-based learning of theoretical computer science W Hämäläinen Kolin kolistelut Koli Calling 2003, Proceedings of the Third Finnish/Baltic …, 2003 | 40 | 2003 |
Efficient discovery of the top-k optimal dependency rules with Fisher's exact test of significance W Hamalainen 2010 IEEE International Conference on Data Mining, 196-205, 2010 | 33 | 2010 |
Measuring behaviour accurately with instantaneous sampling: A new tool for selecting appropriate sampling intervals W Hämäläinen, S Ruuska, T Kokkonen, S Orkola, J Mononen Applied Animal Behaviour Science 180, 166-173, 2016 | 23 | 2016 |
New upper bounds for tight and fast approximation of Fisher’s exact test in dependency rule mining W Hämäläinen Computational statistics & data analysis 93, 469-482, 2016 | 19 | 2016 |
Metabolomics of synovial fluid and infrapatellar fat pad in patients with osteoarthritis or rheumatoid arthritis P Nieminen, W Hämäläinen, J Savinainen, M Lehtonen, S Lehtiniemi, ... Inflammation 45 (3), 1101-1117, 2022 | 17 | 2022 |
Can stealing cows distort the results of feeding trials? An experiment for quantification and prevention of stealing feed by dairy cows from roughage intake control feeders S Ruuska, W Hämäläinen, A Sairanen, E Juutinen, L Tuomisto, ... Applied Animal Behaviour Science 159, 1-8, 2014 | 15 | 2014 |
Class NP, NP-complete, and NP-hard problems W Hämäläinen Sort, 1-7, 2006 | 15 | 2006 |
Evaluation of clustering methods for adaptive learning systems W Hämäläinen, V Kumpulainen, M Mozgovoy Artificial Intelligence Applications in Distance Education, 237-260, 2014 | 13 | 2014 |
Efficient search for statistically significant dependency rules in binary data W Hämäläinen Helsingin yliopisto, 2010 | 12 | 2010 |
Statistically sound pattern discovery. W Hämäläinen, GI Webb KDD, 1976, 2014 | 11 | 2014 |
Descriptive and predictive modelling techniques for educational technology W Hämäläinen Licentiate thesis, Department of Computer Science, University of Joensuu, 2006 | 10 | 2006 |