The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models E Kurtic, D Campos, T Nguyen, E Frantar, M Kurtz, B Fineran, M Goin, ... EMNLP 2022, 2022 | 101 | 2022 |
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information E Frantar, E Kurtic, D Alistarh NeurIPS 2021, 2021 | 48 | 2021 |
ZipLM: Hardware-Aware Structured Pruning of Language Models E Kurtic, E Frantar, D Alistarh arXiv preprint arXiv:2302.04089, 2023 | 18 | 2023 |
GMP*: Well-Tuned Gradual Magnitude Pruning Can Outperform Most BERT-Pruning Methods E Kurtic, D Alistarh arXiv preprint arXiv:2210.06384, 2022 | 13 | 2022 |
ZipLM: Inference-Aware Structured Pruning of Language Models E Kurtić, E Frantar, D Alistarh Advances in Neural Information Processing Systems 36, 2024 | 9 | 2024 |
Sparse Finetuning for Inference Acceleration of Large Language Models E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh arXiv preprint arXiv:2310.06927, 2023 | 9 | 2023 |
CrAM: A Compression-Aware Minimizer A Peste, A Vladu, E Kurtic, CH Lampert, D Alistarh ICLR 2023, 2022 | 8 | 2022 |
SparseProp: efficient sparse backpropagation for faster training of neural networks at the edge M Nikdan, T Pegolotti, E Iofinova, E Kurtic, D Alistarh International Conference on Machine Learning, 26215-26227, 2023 | 6 | 2023 |
CAP: Correlation-Aware Pruning for Highly-Accurate Sparse Vision Models D Kuznedelev, E Kurtić, E Frantar, D Alistarh Advances in Neural Information Processing Systems 36, 2024 | 5 | 2024 |
Accurate Neural Network Pruning Requires Rethinking Sparse Optimization D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh arXiv preprint arXiv:2308.02060, 2023 | 4 | 2023 |
SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks M Nikdan, T Pegolotti, E Iofinova, E Kurtic, D Alistarh ICML 2023, 2023 | 4 | 2023 |
Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment A Agarwalla, A Gupta, A Marques, S Pandit, M Goin, E Kurtic, K Leong, ... arXiv preprint arXiv:2405.03594, 2024 | 2 | 2024 |
Error Feedback Can Accurately Compress Preconditioners IV Modoranu, A Kalinov, E Kurtic, D Alistarh arXiv preprint arXiv:2306.06098, 2023 | 2 | 2023 |
oViT: An Accurate Second-Order Pruning Framework for Vision Transformers D Kuznedelev, E Kurtic, E Frantar, D Alistarh arXiv preprint arXiv:2210.09223, 2022 | 2 | 2022 |
Vision Models Can Be Efficiently Specialized via Few-Shot Task-Aware Compression D Kuznedelev, S Tabesh, K Noorbakhsh, E Frantar, S Beery, E Kurtic, ... arXiv preprint arXiv:2303.14409, 2023 | 1 | 2023 |
Implementation of algorithm for detection of single phase fault with electric arc on dsPIC30F4013 microcontroller K Korjenić, E Kurtić, A Akšamović 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), 1-6, 2018 | 1 | 2018 |
Panza: A Personalized Text Writing Assistant via Data Playback and Local Fine-Tuning A Nicolicioiu, E Iofinova, E Kurtic, M Nikdan, A Panferov, I Markov, ... arXiv preprint arXiv:2407.10994, 2024 | | 2024 |
Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models E Kurtic, A Moeini, D Alistarh arXiv preprint arXiv:2406.12572, 2024 | | 2024 |
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence IV Modoranu, M Safaryan, G Malinovsky, E Kurtic, T Robert, P Richtarik, ... arXiv preprint arXiv:2405.15593, 2024 | | 2024 |
How to Prune Your Language Model: Recovering Accuracy on the “Sparsity May Cry” Benchmark E Kurtic, T Hoefler, D Alistarh Conference on Parsimony and Learning, 542-553, 2024 | | 2024 |