关注
Adityanarayanan Radhakrishnan
Adityanarayanan Radhakrishnan
其他姓名Adit Radhakrishnan, Adit Radha
Broad Institute of MIT and Harvard
在 mit.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
KD Yang, A Belyaeva, S Venkatachalapathy, K Damodaran, A Katcoff, ...
Nature communications 12 (1), 31, 2021
1422021
Overparameterized neural networks implement associative memory
A Radhakrishnan, M Belkin, C Uhler
Proceedings of the National Academy of Sciences 117 (44), 27162-27170, 2020
122*2020
Mechanism for feature learning in neural networks and backpropagation-free machine learning models
A Radhakrishnan, D Beaglehole, P Pandit, M Belkin
Science, 2024
59*2024
Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing
A Belyaeva, L Cammarata, A Radhakrishnan, C Squires, KD Yang, ...
Nature communications 12 (1), 1024, 2021
582021
Machine learning for nuclear mechano-morphometric biomarkers in cancer diagnosis
A Radhakrishnan, K Damodaran, AC Soylemezoglu, C Uhler, ...
Scientific reports 7 (1), 17946, 2017
572017
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
A Radhakrishnan, SF Friedman, S Khurshid, K Ng, P Batra, SA Lubitz, ...
Nature Communications 14 (1), 2436, 2023
282023
Simple, fast, and flexible framework for matrix completion with infinite width neural networks
A Radhakrishnan, G Stefanakis, M Belkin, C Uhler
Proceedings of the National Academy of Sciences 119 (16), e2115064119, 2022
232022
Wide and deep neural networks achieve consistency for classification
A Radhakrishnan, M Belkin, C Uhler
Proceedings of the National Academy of Sciences 120 (14), e2208779120, 2023
212023
Increasing depth leads to U-shaped test risk in over-parameterized convolutional networks
E Nichani, A Radhakrishnan, C Uhler
arXiv preprint arXiv:2010.09610, 2020
21*2020
Counting Markov equivalence classes for DAG models on trees
A Radhakrishnan, L Solus, C Uhler
Discrete Applied Mathematics 244, 170-185, 2018
192018
Quadratic models for understanding neural network dynamics
L Zhu, C Liu, A Radhakrishnan, M Belkin
arXiv preprint arXiv:2205.11787, 2022
162022
Counting Markov equivalence classes by number of immoralities
A Radhakrishnan, L Solus, C Uhler
arXiv preprint arXiv:1611.07493, 2016
152016
Patchnet: interpretable neural networks for image classification
A Radhakrishnan, C Durham, A Soylemezoglu, C Uhler
arXiv preprint arXiv:1705.08078, 2017
132017
Mechanism of feature learning in convolutional neural networks
D Beaglehole, A Radhakrishnan, P Pandit, M Belkin
arXiv preprint arXiv:2309.00570, 2023
122023
A mechanism for producing aligned latent spaces with autoencoders
S Jain, A Radhakrishnan, C Uhler
arXiv preprint arXiv:2106.15456, 2021
102021
Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning
L Zhu, C Liu, A Radhakrishnan, M Belkin
arXiv preprint arXiv:2306.04815, 2023
92023
Transfer learning with kernel methods
A Radhakrishnan, M Ruiz Luyten, N Prasad, C Uhler
Nature Communications 14 (1), 5570, 2023
82023
Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12, 31
KD Yang, A Belyaeva, S Venkatachalapathy, K Damodaran, A Katcoff, ...
72021
Linear convergence of generalized mirror descent with time-dependent mirrors
A Radhakrishnan, M Belkin, C Uhler
arXiv preprint arXiv:2009.08574, 2020
7*2020
Linear Recursive Feature Machines provably recover low-rank matrices
A Radhakrishnan, M Belkin, D Drusvyatskiy
arXiv preprint arXiv:2401.04553, 2024
62024
系统目前无法执行此操作,请稍后再试。
文章 1–20