关注
Zachary J. Grant
Zachary J. Grant
Post Doctoral Researcher
在 msu.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Explicit strong stability preserving multistage two-derivative time-stepping schemes
AJ Christlieb, S Gottlieb, Z Grant, DC Seal
Journal of Scientific Computing 68, 914-942, 2016
512016
Strong stability preserving integrating factor Runge--Kutta methods
L Isherwood, ZJ Grant, S Gottlieb
SIAM Journal on Numerical Analysis 56 (6), 3276-3307, 2018
502018
Implicit and implicit–explicit strong stability preserving Runge–Kutta methods with high linear order
S Conde, S Gottlieb, ZJ Grant, JN Shadid
Journal of Scientific Computing 73, 667-690, 2017
432017
Explicit strong stability preserving multistep Runge–Kutta methods
C Bresten, S Gottlieb, Z Grant, D Higgs, D Ketcheson, A Németh
Mathematics of Computation 86 (304), 747-769, 2017
422017
A strong stability preserving analysis for explicit multistage two-derivative time-stepping schemes based on Taylor series conditions
Z Grant, S Gottlieb, DC Seal
Communications on Applied Mathematics and Computation 1, 21-59, 2019
272019
High Order Strong Stability Preserving MultiDerivative Implicit and IMEX Runge--Kutta Methods with Asymptotic Preserving Properties
S Gottlieb, ZJ Grant, J Hu, R Shu
SIAM Journal on Numerical Analysis 60 (1), 423-449, 2022
242022
Strong stability preserving integrating factor two-step Runge–Kutta methods
L Isherwood, ZJ Grant, S Gottlieb
Journal of Scientific Computing 81 (3), 1446-1471, 2019
202019
A GPU-accelerated mixed-precision WENO method for extremal black hole and gravitational wave physics computations
SE Field, S Gottlieb, ZJ Grant, LF Isherwood, G Khanna
Communications on Applied Mathematics and Computation 5 (1), 97-115, 2023
162023
A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD
V DeCaria, S Gottlieb, ZJ Grant, WJ Layton
Journal of Computational Physics 455, 110927, 2022
152022
Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order
S Gottlieb, Z Grant, D Higgs
Mathematics of Computation 84 (296), 2743-2761, 2015
132015
RK-Opt: A package for the design of numerical ODE solvers
DI Ketcheson, M Parsani, Z Grant, A Ahmadia, H Ranocha
The Open Journal, 2020
82020
Two-derivative error inhibiting schemes and enhanced error inhibiting schemes
A Ditkowski, S Gottlieb, ZJ Grant
SIAM Journal on Numerical Analysis 58 (6), 3197-3225, 2020
8*2020
Perturbed Runge–Kutta methods for mixed precision applications
ZJ Grant
Journal of Scientific Computing 92 (1), 6, 2022
72022
Performance evaluation of mixed-precision Runge-Kutta methods
B Burnett, S Gottlieb, ZJ Grant, A Heryudono
2021 IEEE High Performance Extreme Computing Conference (HPEC), 1-6, 2021
62021
Downwinding for preserving strong stability in explicit integrating factor Runge–Kutta methods
Leah Isherwood, Sigal Gottlieb, Zachary J. Grant
Pure and Applied Mathematics Quarterly 14 (1), Pages: 3 – 25, 2019
6*2019
Strong stability preserving sixth order two-derivative Runge–Kutta methods
GF Reynoso, S Gottlieb, ZJ Grant
AIP Conference Proceedings 1863 (1), 2017
62017
High order unconditionally strong stability preserving multi-derivative implicit and IMEX Runge–Kutta methods with asymptotic preserving properties
S Gottlieb, ZJ Grant, J Hu, R Shu
arXiv preprint arXiv:2102.11939, 2021
5*2021
Explicit and implicit error inhibiting schemes with post-processing
A Ditkowski, S Gottlieb, ZJ Grant
Computers & Fluids 208, 104534, 2020
52020
Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods
B Burnett, S Gottlieb, ZJ Grant
Communications on Applied Mathematics and Computation 6 (1), 705-738, 2024
12024
Stability Analysis and Performance Evaluation of Mixed-Precision Runge-Kutta Methods
B Burnett, S Gottlieb, ZJ Grant
arXiv preprint arXiv:2212.11849, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20