关注
Rudi Agius
Rudi Agius
未知所在单位机构
在 regionh.dk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Protein–protein binding affinity prediction on a diverse set of structures
IH Moal, R Agius, PA Bates
Bioinformatics 27 (21), 3002-3009, 2011
1232011
Community‐wide evaluation of methods for predicting the effect of mutations on protein–protein interactions
R Moretti, SJ Fleishman, R Agius, M Torchala, PA Bates, PL Kastritis, ...
Proteins: Structure, Function, and Bioinformatics 81 (11), 1980-1987, 2013
1132013
Machine learning can identify newly diagnosed patients with CLL at high risk of infection
R Agius, C Brieghel, MA Andersen, AT Pearson, B Ledergerber, ...
Nature communications 11 (1), 363, 2020
982020
Understanding cancer mechanisms through network dynamics
TMK Cheng, S Gulati, R Agius, PA Bates
Briefings in functional genomics 11 (6), 543-560, 2012
472012
A Markov‐chain model description of binding funnels to enhance the ranking of docked solutions
M Torchala, IH Moal, RAG Chaleil, R Agius, PA Bates
Proteins: Structure, Function, and Bioinformatics 81 (12), 2143-2149, 2013
382013
Characterizing changes in the rate of protein-protein dissociation upon interface mutation using hotspot energy and organization
R Agius, M Torchala, IH Moal, J Fernández-Recio, PA Bates
PLOS Computational Biology 9 (9), e1003216, 2013
302013
Artificial intelligence models in chronic lymphocytic leukemia–recommendations toward state-of-the-art
R Agius, M Parviz, CU Niemann
Leukemia & Lymphoma 63 (2), 265-278, 2022
122022
Identifying patients with chronic lymphocytic leukemia without need of treatment: End of endless watch and wait?
C Brieghel, V Galle, R Agius, C da Cunha‐Bang, MA Andersen, ...
European Journal of Haematology 108 (5), 369-378, 2022
102022
Early stimulated immune responses predict clinical disease severity in hospitalized COVID-19 patients
R Svanberg, C MacPherson, A Zucco, R Agius, T Faitova, MA Andersen, ...
Communications medicine 2 (1), 114, 2022
92022
Prediction of clinical outcome in CLL based on recurrent gene mutations, CLL-IPI variables, and (para) clinical data
M Parviz, C Brieghel, R Agius, CU Niemann
Blood advances 6 (12), 3716-3728, 2022
62022
Personalized survival probabilities for SARS-CoV-2 positive patients by explainable machine learning
AG Zucco, R Agius, R Svanberg, KS Moestrup, RZ Marandi, ...
Scientific Reports 12 (1), 13879, 2022
32022
Identifying CLL patients at high risk of atrial fibrillation on treatment using machine learning
M Parviz, R Agius, EC Rotbain, N Vainer, K Aarup, CU Niemann
Leukemia & Lymphoma 65 (4), 449-459, 2024
12024
P629: THE CLL TREATMENT INFECTION MODEL–CLINICAL PROSPECTIVE VALIDATION AS PART OF THE PREVENT-ACALL TRIAL
C Niemann, MD Levin, A Österborg, J Lundin, M Kättström, J Vollerup, ...
Hemasphere 7 (S3), e1432517, 2023
12023
Deployment and validation of the CLL treatment infection model adjoined to an EHR system
R Agius, AC Riis-Jensen, B Wimmer, C da Cunha-Bang, DD Murray, ...
NPJ digital medicine 7 (1), 147, 2024
2024
The Danish Lymphoid Cancer Research (DALY-CARE) data resource: the basis for developing data-driven hematology
C Brieghel, M Werling, CM Frederiksen, M Parviz, C da Cunha-Bang, ...
medRxiv, 2024.04. 11.24305663, 2024
2024
Author Correction: Early stimulated immune responses predict clinical disease severity in hospitalized COVID-19 patients
R Svanberg, C MacPherson, A Zucco, R Agius, T Faitova, MA Andersen, ...
Communications Medicine 3 (1), 15, 2023
2023
Identifying CLL Patients at High Risk of Infection on Treatment Using Machine Learning
M Parviz, R Agius, E Curovic Rotbain, K Aarup, N Vainer, CU Niemann
Blood 140 (Supplement 1), 7034-7035, 2022
2022
Understanding Stability of Protein-Protein Complexes
R Agius
UCL (University College London), 2015
2015
Implementation of the CLL Treatment Infection Model Adjoined to an Electronic Health Record System-Guidelines for Practical Implementation of Data-Driven Models
R Agius, AC Riis-Jensen, B Wimmer, C da Cunha-Bang, DD Murray, ...
Available at SSRN 4555192, 0
系统目前无法执行此操作,请稍后再试。
文章 1–19