关注
Łukasz Kuciński
Łukasz Kuciński
Polish Academy of Sciences; University of Warsaw; IDEAS NCBR
在 impan.pl 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Continual World: A Robotic Benchmark For Continual Reinforcement Learning
M Wołczyk, M Zając, R Pascanu, Ł Kuciński, P Miłoś
NeurIPS 2021, arXiv preprint arXiv:2105.10919, 2021
732021
Complete discounted cash flow valuation
L Gajek, Ł Kuciński
Insurance: Mathematics and Economics 73, 1-19, 2017
302017
Subgoal Search For Complex Reasoning Tasks
K Czechowski, T Odrzygóźdź, M Zbysiński, M Zawalski, K Olejnik, Y Wu, ...
NeurIPS 2021, arXiv preprint arXiv:2108.11204, 2021
272021
Disentangling Transfer in Continual Reinforcement Learning
M Wołczyk, M Zając, R Pascanu, Ł Kuciński, P Miłoś
NeurIPS 2022, arXiv preprint arXiv:2209.13900, 2022
242022
Magnushammer: A transformer-based approach to premise selection
M Mikuła, S Antoniak, S Tworkowski, AQ Jiang, JP Zhou, C Szegedy, ...
arXiv preprint arXiv:2303.04488, 2023
192023
Catalytic Role Of Noise And Necessity Of Inductive Biases In The Emergence Of Compositional Communication
Ł Kuciński, T Korbak, P Kołodziej, P Miłoś
NeurIPS 2021, 2021
142021
Continuous control with ensemble deep deterministic policy gradients
P Januszewski, M Olko, M Królikowski, J Świątkowski, M Andrychowicz, ...
NeurIPS Deep RL workshop 2021, arXiv preprint arXiv:2111.15382, 2021
82021
Uncertainty-sensitive learning and planning with ensembles
P Miłoś, Ł Kuciński, K Czechowski, P Kozakowski, M Klimek
Uncertainty and Robustness in Deep Learning Workshop, ICML 2020, arXiv …, 2019
82019
Interaction history as a source of compositionality in emergent communication
T Korbak, J Zubek, Ł Kuciński, P Miłoś, J Rączaszek-Leonardi
Interaction Studies 22 (2), 212-243, 2021
72021
Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search
M Zawalski, M Tyrolski, K Czechowski, D Stachura, P Piękos, ...
ICLR 2023, arXiv preprint arXiv:2206.00702, 2022
62022
Developmentally motivated emergence of compositional communication via template transfer
T Korbak, J Zubek, Ł Kuciński, P Miłoś, J Rączaszek-Leonardi
arXiv preprint arXiv:1910.06079, 2019
62019
Emergence of compositional language in communication through noisy channel
Ł Kuciński, P Kołodziej, P Miłoś
Language in Reinforcement Learning Workshop at ICML 2020, 2020
42020
Structured Packing in LLM Training Improves Long Context Utilization
K Staniszewski, S Tworkowski, S Jaszczur, H Michalewski, Ł Kuciński, ...
arXiv preprint arXiv:2312.17296, 2023
32023
GUIDE: Guidance-based Incremental Learning with Diffusion Models
B Cywiński, K Deja, T Trzciński, B Twardowski, Ł Kuciński
arXiv preprint arXiv:2403.03938, 2024
22024
Trust Your : Gradient-based Intervention Targeting for Causal Discovery
M Olko, M Zając, A Nowak, N Scherrer, Y Annadani, S Bauer, Ł Kuciński, ...
Causal Machine Learning for Real-World Impact Workshop, NeurIPS 2022, arXiv …, 2022
22022
Structure and randomness in planning and reinforcement learning
K Czechowski, P Januszewski, P Kozakowski, Ł Kuciński, P Miłoś
2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021
22021
To value a firm using DCF you must know its value: how to cope with this paradox
L Gajek, Ł Kuciński
Manuscript, 2012
22012
Optimal risk sharing as a cooperative game
Ł Kuciński
Applicationes Mathematicae 2 (38), 219-242, 2011
22011
Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem
M Wołczyk, B Cupiał, M Ostaszewski, M Bortkiewicz, M Zając, R Pascanu, ...
arXiv preprint arXiv:2402.02868, 2024
12024
The Role of Forgetting in Fine-Tuning Reinforcement Learning Models
M Wolczyk, B Cupiał, M Ostaszewski, M Bortkiewicz, M Zając, R Pascanu, ...
12023
系统目前无法执行此操作,请稍后再试。
文章 1–20