Existence and deformations of Kähler–Einstein metrics on smoothable Q-Fano varieties C Spotti, S Sun, C Yao Duke Mathematical Journal 165 (16), 3043-3083, 2016 | 82 | 2016 |
Hypersymplectic 4-manifolds, the G2-Laplacian flow, and extension assuming bounded scalar curvature J Fine, C Yao Duke Mathematical Journal 167 (18), 3533-3589, 2018 | 37 | 2018 |
Existence of weak conical Kähler–Einstein metrics along smooth hypersurfaces C Yao Mathematische Annalen 362 (3), 1287-1304, 2015 | 22 | 2015 |
Cohomogeneity‐one ‐Laplacian flow on the 7‐torus H Huang, Y Wang, C Yao Journal of the London Mathematical Society 98 (2), 349-368, 2018 | 17 | 2018 |
Gravitating vortices with positive curvature M Garcia-Fernandez, VP Pingali, C Yao Advances in Mathematics 388, 107851, 2021 | 8 | 2021 |
A report on the hypersymplectic flow J Fine, C Yao Pure and Applied Mathematics Quarterly 15 (Number 4), 1219–1260., 2020 | 8 | 2020 |
The continuity method to deform cone angle C Yao The Journal of Geometric Analysis 26, 1155-1172, 2016 | 6 | 2016 |
Obstructions to the existence of solutions of the self-dual Einstein-Maxwell-Higgs equations on a compact surface L Álvarez-Cónsul, M Garcia-Fernandez, O García-Prada, VP Pingali, ... Bulletin des Sciences Mathematiques 183, 103233, 2023 | 4 | 2023 |
Gravitating vortices and Symplectic Reduction by Stages L Álvarez-Cónsul, M Garcia-Fernandez, O García-Prada, VP Pingali, ... arXiv preprint arXiv:2406.03639, 2024 | 1 | 2024 |
The dissolving limit and large volume limit of Einstein-Bogomol'nyi metrics C Yao arXiv preprint arXiv:2308.09365, 2023 | 1 | 2023 |
Twisted and Singular gravitating vortices C Yao The Journal of Geometric Analysis 31 (12), 12594-12623, 2021 | 1 | 2021 |
Convergence of the hypersymplectic flow on with -symmetry J Fine, W He, C Yao arXiv preprint arXiv:2404.15016, 2024 | | 2024 |
Conical Kähler-Einstein metrics and Its Applications C Yao State University of New York at Stony Brook, 2015 | | 2015 |