OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion C Deng, S Feng, H Wang, X Zhang, P Jin, Y Feng, Q Zeng, Y Chen, Y Lin Advances in Neural Information Processing Systems 35, 6007-6020, 2022 | 56* | 2022 |
Transmission+ reflection anisotropic wave‐equation traveltime and waveform inversion S Feng, GT Schuster Geophysical Prospecting 67 (2), 423-442, 2019 | 40 | 2019 |
Multiscale data-driven seismic full-waveform inversion with field data study S Feng, Y Lin, B Wohlberg IEEE transactions on geoscience and remote sensing 60, 1-14, 2021 | 37 | 2021 |
Fourier-DeepONet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability, and robustness M Zhu, S Feng, Y Lin, L Lu Computer Methods in Applied Mechanics and Engineering 416, 116300, 2023 | 30 | 2023 |
InversionNet3D: Efficient and scalable learning for 3-D full-waveform inversion Q Zeng, S Feng, B Wohlberg, Y Lin IEEE Transactions on Geoscience and Remote Sensing 60, 1-16, 2021 | 26 | 2021 |
Solving seismic wave equations on variable velocity models with Fourier neural operator B Li, H Wang, S Feng, X Yang, Y Lin IEEE Transactions on Geoscience and Remote Sensing 61, 1-18, 2023 | 23 | 2023 |
Multiscale reflection phase inversion with migration deconvolution Y Chen, Z Feng, L Fu, A AlTheyab, S Feng, G Schuster Geophysics 85 (1), R55-R73, 2020 | 22 | 2020 |
Real‐time deep‐learning inversion of seismic full waveform data for CO2 saturation and uncertainty in geological carbon storage monitoring ES Um, D Alumbaugh, Y Lin, S Feng Geophysical Prospecting 72 (Machine learning applications in geophysical …, 2023 | 19 | 2023 |
Multiscale phase inversion for vertical transverse isotropic media S Feng, L Fu, Z Feng, GT Schuster Geophysical Prospecting 69 (8-9), 1634-1649, 2021 | 14 | 2021 |
Skeletonized wave-equation inversion in vertical symmetry axis media without too much math S Feng, GT Schuster Interpretation 5 (3), SO21-SO30, 2017 | 11 | 2017 |
Deep learning multiphysics network for imaging CO2 saturation and estimating uncertainty in geological carbon storage ES Um, D Alumbaugh, M Commer, S Feng, E Gasperikova, Y Li, Y Lin, ... Geophysical Prospecting 72 (Machine learning applications in geophysical …, 2023 | 10 | 2023 |
Development of a multi-scale synthetic data set for the testing of subsurface CO2 storage monitoring strategies D Alumbaugh, M Commer, D Crandall, E Gasperikova, S Feng, W Harbert, ... AGU Fall Meeting Abstracts 2021, S25A-0212, 2021 | 10 | 2021 |
An intriguing property of geophysics inversion Y Feng, Y Chen, S Feng, P Jin, Z Liu, Y Lin International Conference on Machine Learning, 6434-6446, 2022 | 9 | 2022 |
Auto-windowed super-virtual interferometry via machine learning: A strategy of first-arrival traveltime automatic picking for noisy seismic data K Lu, S Feng SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial …, 2018 | 8 | 2018 |
Anisotropic wave-equation traveltime and waveform inversion S Feng, G Schuster SEG International Exposition and Annual Meeting, SEG-2016-13818024, 2016 | 8 | 2016 |
The Kimberlina synthetic multiphysics dataset for CO2 monitoring investigations D Alumbaugh, E Gasperikova, D Crandall, M Commer, S Feng, W Harbert, ... Geoscience Data Journal 11 (2), 216-234, 2024 | 7 | 2024 |
Connect the Dots: In Situ 4-D Seismic Monitoring of CO₂ Storage With Spatio-Temporal CNNs S Feng, X Zhang, B Wohlberg, NP Symons, Y Lin IEEE Transactions on Geoscience and Remote Sensing, 2021 | 7 | 2021 |
Superpixel-based convolutional neural network for georeferencing the drone images S Feng, L Passone, GT Schuster IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2021 | 7 | 2021 |
Physically realistic training data construction for data-driven full-waveform inversion and traveltime tomography S Feng, Y Lin, B Wohlberg SEG International Exposition and Annual Meeting, D031S068R003, 2020 | 7 | 2020 |
Simplifying full waveform inversion via domain-independent self-supervised learning Y Feng, Y Chen, P Jin, S Feng, Z Liu, Y Lin arXiv preprint arXiv:2305.13314, 2023 | 6 | 2023 |