Maptask scheduling in mapreduce with data locality: Throughput and heavy-traffic optimality W Wang, K Zhu, L Ying, J Tan, L Zhang IEEE/ACM Transactions On Networking 24 (1), 190-203, 2014 | 276 | 2014 |
Sparkbench: a comprehensive benchmarking suite for in memory data analytic platform spark M Li, J Tan, Y Wang, L Zhang, V Salapura Proceedings of the 12th ACM international conference on computing frontiers, 1-8, 2015 | 245 | 2015 |
Mronline: Mapreduce online performance tuning M Li, L Zeng, S Meng, J Tan, L Zhang, AR Butt, N Fuller Proceedings of the 23rd international symposium on High-performance parallel …, 2014 | 182 | 2014 |
Resource aware scheduling in a distributed computing environment X Meng, J Tan, L Zhang US Patent 9,201,690, 2015 | 141 | 2015 |
Delay tails in MapReduce scheduling J Tan, X Meng, L Zhang Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international …, 2012 | 123 | 2012 |
Coupling task progress for mapreduce resource-aware scheduling J Tan, X Meng, L Zhang 2013 Proceedings IEEE INFOCOM, 1618-1626, 2013 | 119 | 2013 |
Joint optimization of overlapping phases in MapReduce M Lin, L Zhang, A Wierman, J Tan ACM SIGMETRICS Performance Evaluation Review 41 (3), 16-18, 2014 | 116 | 2014 |
Improving reducetask data locality for sequential mapreduce jobs J Tan, S Meng, X Meng, L Zhang 2013 Proceedings IEEE INFOCOM, 1627-1635, 2013 | 89 | 2013 |
ibtune: Individualized buffer tuning for large-scale cloud databases J Tan, T Zhang, F Li, J Chen, Q Zheng, P Zhang, H Qiao, Y Shi, W Cao, ... Proceedings of the VLDB Endowment 12 (10), 1221-1234, 2019 | 79 | 2019 |
HydraDB: a resilient RDMA-driven key-value middleware for in-memory cluster computing Y Wang, L Zhang, J Tan, M Li, Y Gao, X Guerin, X Meng, S Meng Proceedings of the International Conference for High Performance Computing …, 2015 | 79 | 2015 |
Secrecy outage capacity of fading channels O Gungor, J Tan, CE Koksal, H El-Gamal, NB Shroff IEEE transactions on information theory 59 (9), 5379-5397, 2013 | 76 | 2013 |
Restune: Resource oriented tuning boosted by meta-learning for cloud databases X Zhang, H Wu, Z Chang, S Jin, J Tan, F Li, T Zhang, B Cui Proceedings of the 2021 international conference on management of data, 2102 …, 2021 | 72 | 2021 |
Preemptive {ReduceTask} Scheduling for Fair and Fast Job Completion Y Wang, J Tan, W Yu, L Zhang, X Meng, X Li 10th International Conference on Autonomic Computing (ICAC 13), 279-289, 2013 | 66 | 2013 |
Performance analysis of coupling scheduler for mapreduce/hadoop J Tan, X Meng, L Zhang 2012 Proceedings IEEE INFOCOM, 2586-2590, 2012 | 66 | 2012 |
Dynamic packet fragmentation for wireless channels with failures PR Jelenković, J Tan Proceedings of the 9th ACM international symposium on Mobile ad hoc …, 2008 | 55 | 2008 |
SparkBench: a spark benchmarking suite characterizing large-scale in-memory data analytics M Li, J Tan, Y Wang, L Zhang, V Salapura Cluster Computing 20, 2575-2589, 2017 | 48 | 2017 |
C-hint: An effective and reliable cache management for rdma-accelerated key-value stores Y Wang, X Meng, L Zhang, J Tan Proceedings of the ACM Symposium on Cloud Computing, 1-13, 2014 | 48 | 2014 |
Can retransmissions of superexponential documents cause subexponential delays? PR Jelenkovic, J Tan IEEE INFOCOM 2007-26th IEEE International Conference on Computer …, 2007 | 48 | 2007 |
Sequential cooperation between map and reduce phases to improve data locality X Meng, J Tan, L Zhang US Patent 8,924,978, 2014 | 47 | 2014 |
Designing low-complexity heavy-traffic delay-optimal load balancing schemes: Theory to algorithms X Zhou, F Wu, J Tan, Y Sun, N Shroff Proceedings of the ACM on Measurement and Analysis of Computing Systems 1 (2 …, 2017 | 46 | 2017 |