Macroscopic description for networks of spiking neurons E Montbrió, D Pazó, A Roxin Physical Review X 5 (2), 021028, 2015 | 400 | 2015 |
Thermodynamic limit of the first-order phase transition in the Kuramoto model D Pazó Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 72 (4 …, 2005 | 217 | 2005 |
Low-dimensional dynamics of populations of pulse-coupled oscillators D Pazó, E Montbrió Physical Review X 4 (1), 011009, 2014 | 196 | 2014 |
Unpinning and removal of a rotating wave in cardiac muscle S Takagi, A Pumir, D Pazo, I Efimov, V Nikolski, V Krinsky Physical review letters 93 (5), 058101, 2004 | 138 | 2004 |
Existence of hysteresis in the Kuramoto model with bimodal frequency distributions D Pazó, E Montbrió Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 80 (4 …, 2009 | 84 | 2009 |
Structure of characteristic Lyapunov vectors in spatiotemporal chaos D Pazó, IG Szendro, JM López, MA Rodríguez Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 78 (1 …, 2008 | 83 | 2008 |
Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation I León, D Pazó Physical Review E 100 (1), 012211, 2019 | 82 | 2019 |
From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay D Pazó, E Montbrió Physical review letters 116 (23), 238101, 2016 | 82 | 2016 |
Universal behavior in populations composed of excitable and self-oscillatory elements D Pazó, E Montbrió Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 73 (5 …, 2006 | 74 | 2006 |
Shear diversity prevents collective synchronization E Montbrió, D Pazó Physical Review Letters 106 (25), 254101, 2011 | 68 | 2011 |
Time delay in the Kuramoto model with bimodal frequency distribution E Montbrió, D Pazó, J Schmidt Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 74 (5 …, 2006 | 62 | 2006 |
Pinning force in active media D Pazó, L Kramer, A Pumir, S Kanani, I Efimov, V Krinsky Physical review letters 93 (16), 168303, 2004 | 60 | 2004 |
Role of unstable periodic orbits in phase and lag synchronization between coupled chaotic oscillators D Pazó, MA Zaks, J Kurths Chaos: An Interdisciplinary Journal of Nonlinear Science 13 (1), 309-318, 2003 | 59 | 2003 |
Distinguishing quasiperiodic dynamics from chaos in short-time series Y Zou, D Pazó, MC Romano, M Thiel, J Kurths Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 76 (1 …, 2007 | 56 | 2007 |
Dynamics of a large system of spiking neurons with synaptic delay F Devalle, E Montbrió, D Pazó Physical Review E 98 (4), 042214, 2018 | 51 | 2018 |
Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices IG Szendro, D Pazó, MA Rodríguez, JM López Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 76 (2 …, 2007 | 50 | 2007 |
Exact mean-field theory explains the dual role of electrical synapses in collective synchronization E Montbrió, D Pazó Physical review letters 125 (24), 248101, 2020 | 48 | 2020 |
Kuramoto model for excitation-inhibition-based oscillations E Montbrió, D Pazó Physical review letters 120 (24), 244101, 2018 | 40 | 2018 |
Transition to high-dimensional chaos through quasiperiodic motion D Pazó, E Sánchez, MA Matías International Journal of Bifurcation and Chaos 11 (10), 2683-2688, 2001 | 39 | 2001 |
Synchronization scenarios in the Winfree model of coupled oscillators R Gallego, E Montbrió, D Pazó Physical Review E 96 (4), 042208, 2017 | 33 | 2017 |