关注
Xingchen Hu
Xingchen Hu
National University of Defense Technology
在 ualberta.ca 的电子邮件经过验证
标题
引用次数
引用次数
年份
Granular fuzzy rule-based models: A study in a comprehensive evaluation and construction of fuzzy models
X Hu, W Pedrycz, X Wang
IEEE Transactions on Fuzzy Systems 25 (5), 1342-1355, 2016
792016
Fuzzy classifiers with information granules in feature space and logic-based computing
X Hu, W Pedrycz, X Wang
Pattern Recognition 80, 156-167, 2018
552018
Fuzzy rule-based models with interactive rules and their granular generalization
X Hu, W Pedrycz, O Castillo, P Melin
Fuzzy Sets and Systems 307, 1-28, 2017
402017
Granular Fuzzy Rule-Based Modeling With Incomplete Data Representation
X Hu, Y Shen, W Pedrycz, Y Li, G Wu
IEEE Transactions on Cybernetics 52 (7), 6420 - 6433, 2021
332021
Identification of fuzzy rule-based models with collaborative fuzzy clustering
X Hu, Y Shen, W Pedrycz, X Wang, A Gacek, B Liu
IEEE transactions on cybernetics 52 (7), 6406-6419, 2021
292021
Optimal allocation of information granularity in system modeling through the maximization of information specificity: A development of granular input space
X Hu, W Pedrycz, X Wang
Applied Soft Computing 42, 410-422, 2016
292016
From fuzzy rule-based models to their granular generalizations
X Hu, W Pedrycz, X Wang
Knowledge-Based Systems 124, 133-143, 2017
272017
Data reconstruction with information granules: An augmented method of fuzzy clustering
X Hu, W Pedrycz, G Wu, X Wang
Applied Soft Computing 55, 523-532, 2017
252017
Urban Fire Situation Forecasting: Deep sequence learning with spatio-temporal dynamics
G Jin, Q Wang, C Zhu, Y Feng, J Huang, X Hu
Applied Soft Computing 97, 106730, 2020
222020
Random ensemble of fuzzy rule-based models
X Hu, W Pedrycz, X Wang
Knowledge-Based Systems 181, 104768, 2019
222019
Information granule-based classifier: A development of granular imputation of missing data
X Hu, W Pedrycz, K Wu, Y Shen
Knowledge-Based Systems 214, 106737, 2021
202021
Comparative analysis of logic operators: a perspective of statistical testing and granular computing
X Hu, W Pedrycz, X Wang
International Journal of Approximate Reasoning 66, 73-90, 2015
202015
Development of granular models through the design of a granular output spaces
X Hu, W Pedrycz, X Wang
Knowledge-Based Systems 134, 159-171, 2017
192017
Configuring differential evolution adaptively via path search in a directed acyclic graph for data clustering
G Wu, W Peng, X Hu, R Wang, H Chen
Swarm and Evolutionary Computation 55, 100690, 2020
152020
Multi-view fuzzy classification with subspace clustering and information granules
X Hu, X Liu, W Pedrycz, Q Liao, Y Shen, Y Li, S Wang
IEEE Transactions on Knowledge and Data Engineering 35 (11), 11642-11655, 2022
132022
Fuzzy rule-based models with randomized development mechanisms
X Hu, W Pedrycz, D Wang
Fuzzy Sets and Systems 361, 71-87, 2019
132019
Multi-granulation-based optimal scale selection in multi-scale information systems
H Wang, W Li, T Zhan, K Yuan, X Hu
Computers & Electrical Engineering 92, 107107, 2021
72021
An Efficient Federated Multi-view Fuzzy C-Means Clustering Method
X Hu, J Qin, Y Shen, W Pedrycz, X Liu, J Liu
IEEE Transactions on Fuzzy Systems, 2023
62023
Multivariable fuzzy rule-based models and their granular generalization: A visual interpretable framework
Y Li, X Hu, W Pedrycz, F Yang, Z Liu
Applied Soft Computing 134, 109958, 2023
42023
Fuzzy Rule-Based Models: A Design with Prototype Relocation and Granular Generalization
Y Li, C Chen, X Hu, J Qin, Y Ma
Information Sciences 562, 155-179, 2021
32021
系统目前无法执行此操作,请稍后再试。
文章 1–20