Hitchhikerʼs guide to the fractional Sobolev spaces E Di Nezza, G Palatucci, E Valdinoci Bull. Sci. math. 136, 521-573, 2012 | 4464 | 2012 |
Local behavior of fractional p-minimizers A Di Castro, T Kuusi, G Palatucci Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279-1299, 2016 | 385 | 2016 |
Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces G Palatucci, A Pisante Calc. Var. Partial Differential Equations 50 (3-4), 799-829, 2014 | 363 | 2014 |
Fractional p-eigenvalues G Franzina, G Palatucci Riv. Mat. Univ. Parma 5 (2), 373-386, 2014 | 312 | 2014 |
Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian S Dipierro, G Palatucci, E Valdinoci Le Matematiche 68 (1), 201-216, 2013 | 279 | 2013 |
Nonlocal Harnack inequalities A Di Castro, T Kuusi, G Palatucci J. Funct. Anal. 267 (6), 1807–1836, 2014 | 249 | 2014 |
Local and global minimizers for a variational energy involving a fractional norm G Palatucci, O Savin, E Valdinoci Ann. Mat. Pura Appl. 192 (4), 673-718, 2013 | 186 | 2013 |
Hölder regularity for nonlocal double phase equations C De Filippis, G Palatucci J. Differential Equations, 2019 | 125 | 2019 |
Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting S Dipierro, G Palatucci, E Valdinoci Comm. Math. Phys. 333 (2), 1061-1105, 2015 | 109 | 2015 |
The obstacle problem for nonlinear integro-differential operators J Korvenpää, T Kuusi, G Palatucci Calc. Var. Partial Differential Equations 55 (3), Art. 63, 2016 | 92 | 2016 |
Asymptotics of the -perimeter as S Dipierro, A Figalli, G Palatucci, E Valdinoci Discrete Contin. Dyn. Syst. 33 (7), 2777-2790, 2013 | 83 | 2013 |
The Dirichlet problem for the p-fractional Laplace equation G Palatucci Nonlinear Analysis 177, 699-732, 2018 | 72 | 2018 |
A Global Compactness type result for Palais-Smale sequences in fractional Sobolev spaces G Palatucci, A Pisante Nonlinear Anal. 117, 1-7, 2015 | 61 | 2015 |
Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations J Korvenpää, T Kuusi, G Palatucci Mathematische Annalen 369, 1443-1489, 2017 | 58 | 2017 |
Intrinsic geometry and De Giorgi classes certain anisotropic Sobolev spaces P Baroni, A Di Castro, G Palatucci Discrete Contin. Dyn. Syst. Ser. S. 10 (4), 647-659, 2017 | 54* | 2017 |
A singular perturbation result with a fractional norm A Garroni, G Palatucci Variational problems in materials science, 111-126, 2006 | 31 | 2006 |
Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach G Palatucci, A Pisante, Y Sire Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (3), 819-840, 2015 | 25 | 2015 |
Developments and perspectives in Nonlinear Potential Theory G Mingione, G Palatucci Nonlinear Anal., 2019 | 24 | 2019 |
Nonlocal Harnack inequalities in the Heisenberg group G Palatucci, M Piccinini Calculus of Variations and Partial Differential Equations 61 (5), 185, 2022 | 22 | 2022 |
Recent developments in nonlocal theory G Palatucci, T Kuusi De Gruyter Open, 2017 | 22 | 2017 |