关注
Zekun Shi
Zekun Shi
SEA AI LAB
在 sea.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Model-based deep reinforcement learning for dynamic portfolio optimization
P Yu, JS Lee, I Kulyatin, Z Shi, S Dasgupta
arXiv preprint arXiv:1901.08740, 2019
1012019
Hutchinson trace estimation for high-dimensional and high-order physics-informed neural networks
Z Hu, Z Shi, GE Karniadakis, K Kawaguchi
Computer Methods in Applied Mechanics and Engineering 424, 116883, 2024
162024
Model-based deep reinforcement learning for financial portfolio optimization
P Yu, JS Lee, I Kulyatin, Z Shi, S Dasgupta
RWSDM Workshop, ICML 1, 2019, 2019
122019
Neural Integral Functionals
Z Hu, T Li, Z Shi, K Zheng, G Vignale, K Kawaguchi, YAN Shuicheng, ...
ICLR 2023 Workshop on Physics for Machine Learning, 2023
12023
Diagonalization without Diagonalization: A Direct Optimization Approach for Solid-State Density Functional Theory
T Li, M Lin, S Dale, Z Shi, AH Neto, KS Novoselov, G Vignale
arXiv preprint arXiv:2411.05033, 2024
2024
Jrystal: A JAX-based Differentiable Density Functional Theory Framework for Materials
T Li, Z Shi, SG Dale, G Vignale, M Lin
Amortized Eigendecomposition for Neural Networks
T Li, Z Shi, J Zhao, M Lin
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 0
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Z Shi, Z Hu, M Lin, K Kawaguchi
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 0
Differentiable Optimization in Plane-Wave Density Functional Theory for Solid States
T Li, SG Dale, Z Shi, J Li, G Vignale, AHC Neto, KS Novoselov, M Lin
Generalization in Neural Operator: Irregular Domains, Orthogonal Basis, and Super-Resolution
Z Hu, Z Hao, T Li, Z Shi, K Kawaguchi, M Lin
系统目前无法执行此操作,请稍后再试。
文章 1–10