Pruning neural networks without any data by iteratively conserving synaptic flow H Tanaka, D Kunin, DL Yamins, S Ganguli Advances in neural information processing systems 33, 6377-6389, 2020 | 581 | 2020 |
Loss landscapes of regularized linear autoencoders D Kunin, J Bloom, A Goeva, C Seed International conference on machine learning, 3560-3569, 2019 | 96 | 2019 |
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics D Kunin, J Sagastuy-Brena, S Ganguli, DLK Yamins, H Tanaka arXiv preprint arXiv:2012.04728, 2020 | 68 | 2020 |
Beyond the Quadratic Approximation: the Multiscale Structure of Neural Network Loss Landscapes C Ma, D Kunin, L Wu, L Ying arXiv preprint arXiv:2204.11326, 2022 | 53* | 2022 |
Two routes to scalable credit assignment without weight symmetry D Kunin, A Nayebi, J Sagastuy-Brena, S Ganguli, J Bloom, D Yamins International Conference on Machine Learning, 5511-5521, 2020 | 36 | 2020 |
Noether’s Learning Dynamics: Role of Symmetry Breaking in Neural Networks H Tanaka, D Kunin | 28* | 2021 |
The asymmetric maximum margin bias of quasi-homogeneous neural networks D Kunin, A Yamamura, C Ma, S Ganguli arXiv preprint arXiv:2210.03820, 2022 | 18 | 2022 |
The Limiting Dynamics of SGD: Modified Loss, Phase-Space Oscillations, and Anomalous Diffusion D Kunin, J Sagastuy-Brena, L Gillespie, E Margalit, H Tanaka, S Ganguli, ... Neural Computation 36 (1), 151-174, 2023 | 17* | 2023 |
Stochastic collapse: How gradient noise attracts sgd dynamics towards simpler subnetworks F Chen, D Kunin, A Yamamura, S Ganguli Advances in Neural Information Processing Systems 36, 2024 | 12 | 2024 |
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning D Kunin, A Raventós, C Dominé, F Chen, D Klindt, A Saxe, S Ganguli arXiv preprint arXiv:2406.06158, 2024 | | 2024 |
A Quasistatic Derivation of Optimization Algorithms' Exploration on Minima Manifolds C Ma, D Kunin, L Ying | | |