关注
Mohammad Peikari, PhD
Mohammad Peikari, PhD
Data and Predictive Modeling Scientist, University Health Network
在 uhnresearch.ca 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A cluster-then-label semi-supervised learning approach for pathology image classification
M Peikari, S Salama, S Nofech-Mozes, AL Martel
Scientific reports 8 (1), 1-13, 2018
1902018
Triaging Diagnostically Relevant Regions from Pathology Whole Slides of Breast Cancer: A Texture Based Approach
M Peikari, M Gangeh, J Zubovits, G Clarke, A Martel
IEEE Transaction on Medical Imaging, 2015
892015
Automatic cellularity assessment from post‐treated breast surgical specimens
M Peikari, S Salama, S Nofech‐Mozes, AL Martel
Cytometry Part A 91 (11), 1078-1087, 2017
532017
Automated and manual quantification of tumour cellularity in digital slides for tumour burden assessment
S Akbar, M Peikari, S Salama, AY Panah, S Nofech-Mozes, AL Martel
Scientific reports 9 (1), 14099, 2019
512019
Transitioning between convolutional and fully connected layers in neural networks
S Akbar, M Peikari, S Salama, S Nofech-Mozes, A Martel
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017
342017
Characterization of ultrasound elevation beamwidth artifacts for prostate brachytherapy needle insertion
M Peikari, TK Chen, A Lasso, T Heffter, G Fichtinger, EC Burdette
Medical physics 39 (1), 246-256, 2012
292012
Assessment of residual breast cancer cellularity after neoadjuvant chemotherapy using digital pathology [data set]
AL Martel, S Nofech-Mozes, S Salama, S Akbar, M Peikari
The Cancer Imaging Archive, 2019
282019
Clustering analysis for semi-supervised learning improves classification performance of digital pathology
M Peikari, J Zubovits, G Clarke, AL Martel
Machine Learning in Medical Imaging: 6th International Workshop, MLMI 2015 …, 2015
202015
The transition module: a method for preventing overfitting in convolutional neural networks
S Akbar, M Peikari, S Salama, S Nofech-Mozes, AL Martel
Computer Methods in Biomechanics and Biomedical Engineering: Imaging …, 2019
182019
Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching
M Peikari, AL Martel
Medical Imaging 2016: Digital Pathology 9791, 292-297, 2016
182016
Localization and classification of cell nuclei in post-neoadjuvant breast cancer surgical specimen using fully convolutional networks
R Bidart, MJ Gangeh, M Peikari, S Salama, S Nofech-Mozes, AL Martel, ...
Medical Imaging 2018: Digital Pathology 10581, 191-198, 2018
132018
Determining tumor cellularity in digital slides using resnet
S Akbar, M Peikari, S Salama, S Nofech-Mozes, AL Martel
Medical Imaging 2018: Digital Pathology 10581, 233-239, 2018
132018
Effects of ultrasound section-thickness on brachytherapy needle tip localization error
M Peikari, TK Chen, A Lasso, T Heffter, G Fichtinger
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011: 14th …, 2011
112011
An ensemble-based approach to the development of clinical prediction models for future-onset heart failure and coronary artery disease using machine learning
K Taha, HJ Ross, M Peikari, B Mueller, CPS Fan, E Crowdy, C Manlhiot
Journal of the American College of Cardiology 75 (11_Supplement_1), 2046-2046, 2020
82020
Section-thickness profiling for brachytherapy ultrasound guidance
M Peikari, TK Chen, EC Burdette, G Fichtinger
Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling …, 2011
62011
A Texture Based Approach to Automated Detection of Diagnostically Relevant Regions in Breast Digital Pathology
M Peikari, J Zubovits, G Clarcke, AL Martel
Medical Image Computing and Computer Assisted Intervention Society (MICCAI …, 2013
32013
Fully Convolutional Networks in Localization and Classification of Cell Nuclei
R Bidart, MJ Gangeh, M Peikari, S Salama, S Nofech-Mozes, S Nofech, ...
12019
Automatic Cellularity Assessment in Surgical Specimens After Neoadjuvant Therapy of Breast Cancer
M Peikari
University of Toronto (Canada), 2018
12018
Building Sparse 3D representations from a Set of Calibrated Panoramic Images
D Wojtaszek, R Laganiere, H Peikari, M Peikari
Symposium on Photogrammetry Computer Vision and Image Analysis 38, 186-191, 0
1
Prediction of cancer therapy related cardiac dysfunction by using a machine learning approach with cardiac magnetic resonance images
C Yu, M Peikari, C Fan, C Mcintosh, P Thavendiranathan
European Heart Journal 45 (Supplement_1), ehae666. 3196, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20