关注
Chirag Nagpal
Chirag Nagpal
Research Scientist, Google
在 cs.cmu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data With Competing Risks
C Nagpal, X Li, A Dubrawski
IEEE Journal of Biomedical and Health Informatics 25 (8), 3163-3175, 2021
1262021
Deep Cox mixtures for survival regression
C Nagpal, S Yadlowsky, N Rostamzadeh, K Heller
Machine Learning for Healthcare Conference, 674-708, 2021
672021
An Entity Resolution approach to isolate instances of Human Trafficking online
C Nagpal, K Miller, B Boecking, A Dubrawski
W-NUT, Empirical Methods in Natural Language Processing (EMNLP) 2017, 2017
472017
Interpretable subgroup discovery in treatment effect estimation with application to opioid prescribing guidelines
C Nagpal, D Wei, B Vinzamuri, M Shekhar, SE Berger, S Das, ...
Proceedings of the ACM Conference on Health, Inference, and Learning, 19-29, 2020
30*2020
Deep Parametric Time-to-Event Regression with Time-Varying Covariates
C Nagpal, V Jeanselme, A Dubrawski
Survival Prediction-Algorithms, Challenges and Applications, 184-193, 2021
242021
Counterfactual Phenotyping with Censored Time-to-Events
C Nagpal, M Goswami, K Dufendach, A Dubrawski
ACM Conference on Knowledge Discovery and Data Mining, 2022
232022
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
J Eisenstein, C Nagpal, A Agarwal, A Beirami, A D'Amour, DJ Dvijotham, ...
arXiv preprint arXiv:2312.09244, 2023
222023
auton-survival: An open-source package for regression, counterfactual estimation, evaluation and phenotyping with censored time-to-event data
C Nagpal, W Potosnak, A Dubrawski
Machine Learning for Healthcare Conference, 585-608, 2022
18*2022
Nonlinear semi-parametric models for survival analysis
C Nagpal, R Sangave, A Chahar, P Shah, A Dubrawski, B Raj
arXiv preprint arXiv:1905.05865, 2019
102019
Theoretical guarantees on the best-of-n alignment policy
A Beirami, A Agarwal, J Berant, A D'Amour, J Eisenstein, C Nagpal, ...
arXiv preprint arXiv:2401.01879, 2024
92024
Participatory Personalization in Classification
H James, C Nagpal, KA Heller, B Ustun
Thirty-seventh Conference on Neural Information Processing Systems, 2023
8*2023
A toolbox for surfacing health equity harms and biases in large language models
SR Pfohl, H Cole-Lewis, R Sayres, D Neal, M Asiedu, A Dieng, ...
arXiv preprint arXiv:2403.12025, 2024
52024
Deep multimodal fusion of health records and notes for multitask clinical event prediction
C Nagpal
31st Conference on Neural Information Processing Systems (NIPS 2017), 2017
52017
Robust preference optimization through reward model distillation
A Fisch, J Eisenstein, V Zayats, A Agarwal, A Beirami, C Nagpal, P Shaw, ...
arXiv preprint arXiv:2405.19316, 2024
42024
Understanding subgroup performance differences of fair predictors using causal models
SR Pfohl, N Harris, C Nagpal, D Madras, V Mhasawade, OE Salaudeen, ...
NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with Foundation …, 2023
42023
Recovering Sparse and Interpretable Subgroups with Heterogeneous Treatment Effects with Censored Time-to-Event Outcomes
C Nagpal, V Sanil, A Dubrawski
arXiv preprint arXiv:2302.12504, 2023
42023
Dynamically Personalized Detection of Hemorrhage
C Nagpal, X Li, MR Pinsky, A Dubrawski
Machine Learning for Healthcare Conference, 109-123, 2019
42019
Bias in Language Models: Beyond Trick Tests and Toward RUTEd Evaluation
K Lum, JR Anthis, C Nagpal, A D'Amour
arXiv preprint arXiv:2402.12649, 2024
32024
Risk-Aware Framework Development for Disruption Prediction: Alcator C-Mod and DIII-D Survival Analysis
Z Keith, C Nagpal, C Rea, RA Tinguely
Journal of Fusion Energy 43 (1), 21, 2024
22024
Transforming and Combining Rewards for Aligning Large Language Models
Z Wang, C Nagpal, J Berant, J Eisenstein, A D'Amour, S Koyejo, V Veitch
arXiv preprint arXiv:2402.00742, 2024
22024
系统目前无法执行此操作,请稍后再试。
文章 1–20