关注
Jay Whang
Jay Whang
在 cs.utexas.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Photorealistic text-to-image diffusion models with deep language understanding
C Saharia, W Chan, S Saxena, L Li, J Whang, EL Denton, K Ghasemipour, ...
Advances in Neural Information Processing Systems 35, 36479-36494, 2022
38592022
Imagen Video: High Definition Video Generation with Diffusion Models
J Ho, W Chan, C Saharia, J Whang, R Gao, A Gritsenko, DP Kingma, ...
arXiv preprint arXiv:2210.02303, 2022
8902022
Model-Based Deep Learning
N Shlezinger, J Whang, YC Eldar, AG Dimakis
Proceedings of the IEEE, 2023
2722023
Deblurring via stochastic refinement
J Whang, M Delbracio, H Talebi, C Saharia, AG Dimakis, P Milanfar
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
2032022
Solving Inverse Problems with a Flow-based Noise Model
J Whang, Q Lei, A Dimakis
International Conference on Machine Learning (ICML), 2021
63*2021
Composing Normalizing Flows for Inverse Problems
J Whang, EM Lindgren, AG Dimakis
International Conference on Machine Learning (ICML), 2021
59*2021
Model-Based Deep Learning: Key Approaches and Design Guidelines
N Shlezinger, J Whang, YC Eldar, AG Dimakis
2021 IEEE Data Science and Learning Workshop (DSLW), 1-6, 2021
362021
Neural distributed source coding
J Whang, A Nagle, A Acharya, H Kim, AG Dimakis
IEEE Journal on Selected Areas in Information Theory, 2024
202024
Strategic Object Oriented Reinforcement Learning
R Keramati, J Whang, P Cho, E Brunskill
arXiv preprint arXiv:1806.00175, 2018
202018
Using generative models for semi-supervised learning
DD Adiwardana, A Matsukawa, J Whang
Stanford reports, 2017
102017
Approximate Probabilistic Inference with Composed Flows
J Whang, EM Lindgren, AG Dimakis
NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, arXiv: 2002.11743, 2020
52020
Training Variational Autoencoders with Buffered Stochastic Variational Inference
R Shu, HH Bui, J Whang, S Ermon
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
52019
Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning
R Keramati, J Whang, P Cho, E Brunskill
arXiv preprint arXiv:1806.00175, 2018
42018
Exploring Batch Normalization in Recurrent Neural Networks
J Whang, A Matsukawa
2
Generating images using sequences of generative neural networks
C Saharia, W Chan, M Norouzi, S Saxena, Y Li, JH Whang, DJ Fleet, J Ho
US Patent 11,978,141, 2024
2024
Generating videos using sequences of generative neural networks
J Ho, W Chan, C Saharia, JH Whang, T Salimans
US Patent 11,908,180, 2024
2024
Strategic Exploration in Object-Oriented Reinforcement Learning
R Keramati*, J Whang*, P Cho*, E Brunskil
ICML 2018 workshop on exploration in reinforcement learning, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–17