Generalizing to unseen domains: A survey on domain generalization J Wang, C Lan, C Liu, Y Ouyang, T Qin, W Lu, Y Chen, W Zeng, P Yu IEEE Transactions on Knowledge and Data Engineering, 2022 | 832 | 2022 |
Invertible image rescaling M Xiao, S Zheng, C Liu, Y Wang, D He, G Ke, J Bian, Z Lin, TY Liu European Conference on Computer Vision, 126-144, 2020 | 228 | 2020 |
Understanding and Accelerating Particle-Based Variational Inference C Liu, J Zhuo, P Cheng, R Zhang, J Zhu, L Carin International Conference on Machine Learning, 4082--4092, 2019 | 101* | 2019 |
Learning Causal Semantic Representation for Out-of-Distribution Prediction C Liu, X Sun, J Wang, H Tang, T Li, T Qin, W Chen, TY Liu Advances in Neural Information Processing Systems 34, 2021 | 97 | 2021 |
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Driven Adaptive Prior S Lee, H Kim, C Shin, X Tan, C Liu, Q Meng, T Qin, W Chen, S Yoon, ... International Conference on Learning Representations, 2022 | 89* | 2022 |
Message Passing Stein Variational Gradient Descent J Zhuo, C Liu, J Shi, J Zhu, N Chen, B Zhang International Conference on Machine Learning, 2018 | 87 | 2018 |
Recovering Latent Causal Factor for Generalization to Distributional Shifts X Sun, B Wu, X Zheng, C Liu, W Chen, T Qin, TY Liu Advances in Neural Information Processing Systems 34, 2021 | 65* | 2021 |
Riemannian Stein Variational Gradient Descent for Bayesian Inference C Liu, J Zhu Thirty-Second AAAI Conference on Artificial Intelligence, 2018 | 63 | 2018 |
Benchmarking graphormer on large-scale molecular modeling datasets Y Shi, S Zheng, G Ke, Y Shen, J You, J He, S Luo, C Liu, D He, TY Liu arXiv preprint arXiv:2203.04810, 2022 | 48 | 2022 |
Direct Molecular Conformation Generation J Zhu, Y Xia, C Liu, L Wu, S Xie, T Wang, Y Wang, W Zhou, T Qin, H Li, ... Transactions on Machine Learning Research, 2022 | 42 | 2022 |
Predicting equilibrium distributions for molecular systems with deep learning S Zheng, J He, C Liu, Y Shi, Z Lu, W Feng, F Ju, J Wang, J Zhu, Y Min, ... Nature Machine Intelligence, 1-10, 2024 | 37* | 2024 |
Towards Generating Real-World Time Series Data H Pei, K Ren, Y Yang, C Liu, T Qin, D Li 2021 IEEE International Conference on Data Mining (ICDM), 469-478, 2021 | 36 | 2021 |
Stochastic Gradient Geodesic MCMC Methods C Liu, J Zhu, Y Song Advances in Neural Information Processing Systems, 3009-3017, 2016 | 35 | 2016 |
Understanding MCMC Dynamics as Flows on the Wasserstein Space C Liu, J Zhuo, J Zhu International Conference on Machine Learning, 4093--4103, 2019 | 25 | 2019 |
Variational Annealing of GANs: A Langevin Perspective C Tao, S Dai, L Chen, K Bai, J Chen, C Liu, R Zhang, G Bobashev, ... International Conference on Machine Learning, 6176-6185, 2019 | 22 | 2019 |
Modeling Lost Information in Lossy Image Compression Y Wang, M Xiao, C Liu, S Zheng, TY Liu arXiv preprint arXiv:2006.11999, 2020 | 21 | 2020 |
Sampling with Mirrored Stein Operators J Shi, C Liu, L Mackey International Conference on Learning Representations, 2022 | 20 | 2022 |
Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning J Park, Y Seo, C Liu, L Zhao, T Qin, J Shin, TY Liu Advances in Neural Information Processing Systems 34, 3029-3042, 2021 | 18 | 2021 |
The impact of large language models on scientific discovery: a preliminary study using gpt-4 MR AI4Science, MA Quantum arXiv preprint arXiv:2311.07361, 2023 | 17 | 2023 |
Invertible Rescaling Network and Its Extensions M Xiao, S Zheng, C Liu, Z Lin, TY Liu International Journal of Computer Vision 131 (1), 134-159, 2023 | 14 | 2023 |