Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation TD Kulkarni, K Narasimhan, A Saeedi, J Tenenbaum Advances in neural information processing systems 29, 2016 | 1395 | 2016 |
Deep convolutional inverse graphics network TD Kulkarni, WF Whitney, P Kohli, J Tenenbaum Advances in neural information processing systems 28, 2015 | 1112 | 2015 |
Language understanding for text-based games using deep reinforcement learning K Narasimhan, T Kulkarni, R Barzilay arXiv preprint arXiv:1506.08941, 2015 | 470 | 2015 |
Deep successor reinforcement learning TD Kulkarni, A Saeedi, S Gautam, SJ Gershman arXiv preprint arXiv:1606.02396, 2016 | 253 | 2016 |
Picture: a probabilistic programming language for scene perception TD Kulkarni, P Kohli, JB Tenenbaum, VK Mansinghka Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015 | 242 | 2015 |
Synthesizing programs for images using reinforced adversarial learning Y Ganin, T Kulkarni, I Babuschkin, SMA Eslami, O Vinyals International Conference on Machine Learning, 1666-1675, 2018 | 241 | 2018 |
Synthesizing 3d shapes via modeling multi-view depth maps and silhouettes with deep generative networks A Arsalan Soltani, H Huang, J Wu, TD Kulkarni, JB Tenenbaum Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 235 | 2017 |
Unsupervised learning of object keypoints for perception and control TD Kulkarni, A Gupta, C Ionescu, S Borgeaud, M Reynolds, A Zisserman, ... Advances in neural information processing systems 32, 2019 | 207 | 2019 |
Unsupervised control through non-parametric discriminative rewards D Warde-Farley, T Van de Wiele, T Kulkarni, C Ionescu, S Hansen, ... arXiv preprint arXiv:1811.11359, 2018 | 178 | 2018 |
Approximate bayesian image interpretation using generative probabilistic graphics programs VK Mansinghka, TD Kulkarni, YN Perov, J Tenenbaum Advances in neural information processing systems 26, 2013 | 135 | 2013 |
Self-supervised intrinsic image decomposition M Janner, J Wu, TD Kulkarni, I Yildirim, J Tenenbaum Advances in neural information processing systems 30, 2017 | 124 | 2017 |
Learning to perform physics experiments via deep reinforcement learning M Denil, P Agrawal, TD Kulkarni, T Erez, P Battaglia, N De Freitas arXiv preprint arXiv:1611.01843, 2016 | 89 | 2016 |
Use of association of an object detected in an image to obtain information to display to a user TD Kulkarni, B Liu, AB Nandwani, JE Taseski, BJ Yule, D Kaleas, ... US Patent App. 13/549,339, 2013 | 71 | 2013 |
Efficient and robust analysis-by-synthesis in vision: A computational framework, behavioral tests, and modeling neuronal representations I Yildirim, TD Kulkarni, WA Freiwald, JB Tenenbaum Annual conference of the cognitive science society 1 (2), 2015 | 54 | 2015 |
Unsupervised doodling and painting with improved spiral JFJ Mellor, E Park, Y Ganin, I Babuschkin, T Kulkarni, D Rosenbaum, ... arXiv preprint arXiv:1910.01007, 2019 | 49 | 2019 |
Understanding visual concepts with continuation learning WF Whitney, M Chang, T Kulkarni, JB Tenenbaum arXiv preprint arXiv:1602.06822, 2016 | 46 | 2016 |
Variational particle approximations A Saeedi, TD Kulkarni, VK Mansinghka, SJ Gershman Journal of Machine Learning Research 18 (69), 1-29, 2017 | 44 | 2017 |
Differentially private Bayesian inference for generalized linear models T Kulkarni, J Jälkö, A Koskela, S Kaski, A Honkela International Conference on Machine Learning, 5838-5849, 2021 | 32 | 2021 |
Inverse graphics with probabilistic cad models TD Kulkarni, VK Mansinghka, P Kohli, JB Tenenbaum arXiv preprint arXiv:1407.1339, 2014 | 25 | 2014 |
Efficient analysis-by-synthesis in vision: A computational framework, behavioral tests, and comparison with neural representations I Yildirim, TD Kulkarni, WA Freiwald, JB Tenenbaum Thirty-seventh annual conference of the cognitive science society 4, 2015 | 22 | 2015 |