关注
Natalia Kireeva
Natalia Kireeva
Senior Scientific Researcher, Frumkin Institute of Physical Chemistry and Electrochemistry RAS
在 phyche.ac.ru 的电子邮件经过验证
标题
引用次数
引用次数
年份
Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points?
A Varnek, N Kireeva, IV Tetko, II Baskin, VP Solov'ev
Journal of chemical information and modeling 47 (3), 1111-1122, 2007
1772007
Generative topographic mapping (GTM): universal tool for data visualization, structure‐activity modeling and dataset comparison
N Kireeva, II Baskin, HA Gaspar, D Horvath, G Marcou, A Varnek
Molecular informatics 31 (3‐4), 301-312, 2012
1582012
The one‐class classification approach to data description and to models applicability domain
II Baskin, N Kireeva, A Varnek
Molecular Informatics 29 (8‐9), 581-587, 2010
632010
Materials space of solid-state electrolytes: Unraveling chemical composition–structure–ionic conductivity relationships in garnet-type metal oxides using cheminformatics …
N Kireeva, VS Pervov
Physical Chemistry Chemical Physics 19 (31), 20904-20918, 2017
452017
Toward Navigating Chemical Space of Ionic Liquids: Prediction of Melting Points Using Generative Topographic Maps
N Kireeva, SL Kuznetsov, AY Tsivadze
Industrial & Engineering Chemistry Research 51, 14337−14343, 2012
282012
Structure-property modelling of complex formation of strontium with organic ligands in water
VP Solov’ev, NV Kireeva, AY Tsivadze, AA Varnek
Journal of Structural Chemistry 47 (2), 298-311, 2006
272006
QSPR ensemble modelling of alkaline-earth metal complexation
VP Solov’ev, N Kireeva, AY Tsivadze, A Varnek
Journal of Inclusion Phenomena and Macrocyclic Chemistry 76 (1-2), 159-171, 2013
262013
Using Self-Organizing maps to accelerate similarity search
F Bonachera, G Marcou, N Kireeva, A Varnek, D Horvath
Bioorganic & Medicinal Chemistry, 2012
262012
Materials Informatics Screening of Li‐Rich Layered Oxide Cathode Materials with Enhanced Characteristics Using Synthesis Data
N Kireeva, VS Pervov
Batteries & Supercaps 3, 427, 2020
202020
The complexation of metal ions with various organic ligands in water: Prediction of stability constants by QSPR ensemble modelling
V Solov’ev, N Kireeva, S Ovchinnikova, A Tsivadze
Journal of Inclusion Phenomena and Macrocyclic Chemistry 83, 89-101, 2015
202015
Computer-aided design of new metal binders
A Varnek, D Fourches, N Kireeva, O Klimchuk, G Marcou, A Tsivadze, ...
Radiochimica Acta 96 (8), 505-511, 2008
202008
Towards in silico identification of the human ether-a-go-go-related gene channel blockers: discriminative vs. generative classification models
N Kireeva, SL Kuznetsov, AA Bykov, AY Tsivadze
SAR and QSAR in Environmental Research, 1-15, 2013
162013
Impact of distance-based metric learning on classification and visualization model performance and structure–activity landscapes
NV Kireeva, SI Ovchinnikova, SL Kuznetsov, AM Kazennov, AY Tsivadze
Journal of computer-aided molecular design 28, 61-73, 2014
122014
Machine Learning Analysis of Microwave Dielectric Properties for Seven Structure Types: The Role of the Processing and Composition
N Kireeva, VP Solov’ev
Journal of Physics and Chemistry of Solids, 110178, 2021
102021
Nonlinear Dimensionality Reduction for Visualizing Toxicity Data: Distance‐Based Versus Topology‐Based Approaches
NV Kireeva, SI Ovchinnikova, IV Tetko, AM Asiri, KV Balakin, AY Tsivadze
ChemMedChem 9 (5), 1047-1059, 2014
102014
Modeling ionic conductivity and activation energy in garnet-structured solid electrolytes: The role of composition, grain boundaries and processing
NV Kireeva, AY Tsivadze, VS Pervov
Solid State Ionics 399 (15), 116293, 2023
62023
Supervised extensions of chemography approaches: case studies of chemical liabilities assessment
SI Ovchinnikova, AA Bykov, AY Tsivadze, EP Dyachkov, NV Kireeva
Journal of Cheminformatics 6, 1-18, 2014
62014
New possibilities to obtain ceramic nanoheterostructures with enhanced ionic conductivity
VS Pervov, EV Makhonina, AE Zotova, NV Kireeva, IMA Kedrinsky
Nanotechnologies in Russia 9, 347-355, 2014
62014
Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
NV Kireeva, AY Tsivadze, VS Pervov
Batteries 9, 430, 2023
42023
A Machine Learning-Based Study of Li+ and Na+ Metal Complexation with Phosphoryl-Containing Ligands for the Selective Extraction of Li+ from Brine
N Kireeva, VE Baulin, AY Tsivadze
ChemEngineering 7 (3), 41, 2023
42023
系统目前无法执行此操作,请稍后再试。
文章 1–20