关注
Sushant Sachdeva
Sushant Sachdeva
UToronto, Associate Professor. Vector Institute Affiliate
在 cs.toronto.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Maximum flow and minimum-cost flow in almost-linear time
L Chen, R Kyng, YP Liu, R Peng, MP Gutenberg, S Sachdeva
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS …, 2022
2382022
Approximate Gaussian Elimination for Laplacians-fast, sparse, and simple
R Kyng, S Sachdeva
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS …, 2016
2002016
Sparsified cholesky and multigrid solvers for connection laplacians
R Kyng, YT Lee, R Peng, S Sachdeva, DA Spielman
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing …, 2016
1522016
Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator
L Orecchia, S Sachdeva, NK Vishnoi
Proceedings of the 44th symposium on Theory of Computing, 1141-1160, 2012
1322012
Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model
G Zhang, L Li, Z Nado, J Martens, S Sachdeva, G Dahl, C Shallue, ...
Advances in Neural Information Processing Systems, 8196-8207, 2019
1312019
Faster Algorithms via Approximation Theory
S Sachdeva, NK Vishnoi
Foundations and Trends® in Theoretical Computer Science 9 (2), 125-210, 2014
1082014
Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders
S Arora, R Ge, A Moitra, S Sachdeva
Algorithmica 72 (1), 215-236, 2015
1012015
Algorithms for Lipschitz learning on graphs
R Kyng, A Rao, S Sachdeva, DA Spielman
Proceedings of The 28th Conference on Learning Theory, 1190-1223, 2015
912015
Sampling random spanning trees faster than matrix multiplication
D Durfee, R Kyng, J Peebles, AB Rao, S Sachdeva
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing …, 2017
832017
Iterative Refinement for p-norm Regression
D Adil, R Kyng, R Peng, S Sachdeva
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete …, 2019
732019
Graph sparsification, spectral sketches, and faster resistance computation via short cycle decompositions
T Chu, Y Gao, R Peng, S Sachdeva, S Sawlani, J Wang
SIAM Journal on Computing 52 (6), FOCS18-85-FOCS18-157, 2020
712020
Finding overlapping communities in social networks: Toward a rigorous approach
S Arora, R Ge, S Sachdeva, G Schoenebeck
Proceedings of the 13th ACM Conference on Electronic Commerce, 37-54, 2012
692012
Fast, Provable Algorithms for Isotonic Regression in all L_p-norms
R Kyng, A Rao, S Sachdeva
Advances in Neural Information Processing Systems, 2701-2709, 2015
642015
Convergence Results for Neural Networks via Electrodynamics
R Panigrahy, A Rahimi, S Sachdeva, Q Zhang
9th Innovations in Theoretical Computer Science Conference (ITCS 2018) 94 …, 2017
55*2017
Flows in almost linear time via adaptive preconditioning
R Kyng, R Peng, S Sachdeva, D Wang
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing …, 2019
432019
Fast, provably convergent IRLS algorithm for p-norm linear regression
D Adil, R Peng, S Sachdeva
Advances in Neural Information Processing Systems, 14189-14200, 2019
412019
Optimal inapproximability for scheduling problems via structural hardness for hypergraph vertex cover
S Sachdeva, R Saket
Computational Complexity (CCC), 2013 IEEE Conference on, 219-229, 2013
402013
A framework for analyzing resparsification algorithms
R Kyng, J Pachocki, R Peng, S Sachdeva
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete …, 2017
382017
Regularized linear autoencoders recover the principal components, eventually
X Bao, J Lucas, S Sachdeva, RB Grosse
Advances in Neural Information Processing Systems 33, 2020
342020
Faster p-norm minimizing flows, via smoothed q-norm problems
D Adil, S Sachdeva
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete …, 2020
312020
系统目前无法执行此操作,请稍后再试。
文章 1–20