A two-phase transfer learning model for cross-project defect prediction C Liu, D Yang, X Xia, M Yan, X Zhang Information and Software Technology 107, 125-136, 2019 | 134 | 2019 |
Improving code search with co-attentive representation learning J Shuai, L Xu, C Liu, M Yan, X Xia, Y Lei Proceedings of the 28th International Conference on Program Comprehension …, 2020 | 103 | 2020 |
Opportunities and challenges in code search tools C Liu, X Xia, D Lo, C Gao, X Yang, J Grundy ACM Computing Surveys (CSUR) 54 (9), 1-40, 2021 | 72 | 2021 |
Improving chatgpt prompt for code generation C Liu, X Bao, H Zhang, N Zhang, H Hu, X Zhang, M Yan arXiv preprint arXiv:2305.08360, 2023 | 53 | 2023 |
Two-stage attention-based model for code search with textual and structural features L Xu, H Yang, C Liu, J Shuai, M Yan, Y Lei, Z Xu 2021 IEEE International Conference on Software Analysis, Evolution and …, 2021 | 49 | 2021 |
Recommending github projects for developer onboarding C Liu, D Yang, X Zhang, B Ray, MM Rahman IEEE Access 6, 52082-52094, 2018 | 39 | 2018 |
Multi-dimension convolutional neural network for bug localization B Wang, L Xu, M Yan, C Liu, L Liu IEEE Transactions on Services Computing 15 (3), 1649-1663, 2020 | 24 | 2020 |
Codematcher: Searching code based on sequential semantics of important query words C Liu, X Xia, D Lo, Z Liu, AE Hassan, S Li ACM Transactions on Software Engineering and Methodology (TOSEM) 31 (1), 1-37, 2021 | 22 | 2021 |
Automated change-prone class prediction on unlabeled dataset using unsupervised method M Yan, X Zhang, C Liu, L Xu, M Yang, D Yang Information and Software Technology 92, 1-16, 2017 | 22 | 2017 |
Cross-project change-proneness prediction C Liu, D Yang, X Xia, M Yan, X Zhang 2018 IEEE 42nd annual computer software and applications conference (COMPSAC …, 2018 | 20 | 2018 |
Simplifying deep-learning-based model for code search C Liu, X Xia, D Lo, Z Liu, AE Hassan, S Li arXiv preprint arXiv:2005.14373, 2020 | 13 | 2020 |
Deep metric learning for software change-proneness prediction Y Ge, M Chen, C Liu, F Chen, S Huang, H Wang Intelligence Science and Big Data Engineering: 8th International Conference …, 2018 | 9 | 2018 |
Fine-grained co-attentive representation learning for semantic code search Z Deng, L Xu, C Liu, M Yan, Z Xu, Y Lei 2022 IEEE International Conference on Software Analysis, Evolution and …, 2022 | 8 | 2022 |
A recommender system for developer onboarding C Liu, D Yang, X Zhang, H Hu, J Barson, B Ray Proceedings of the 40th International Conference on Software Engineering …, 2018 | 8 | 2018 |
Self-learning Change-prone Class Prediction. M Yan, M Yang, C Liu, X Zhang SEKE, 134-140, 2016 | 6 | 2016 |
Learning to aggregate: an automated aggregation method for software quality model M Yan, X Zhang, C Liu, J Zou, L Xu, X Xia 2017 IEEE/ACM 39th International Conference on Software Engineering …, 2017 | 5 | 2017 |
Shellfusion: Answer generation for shell programming tasks via knowledge fusion N Zhang, C Liu, X Xia, C Treude, Y Zou, D Lo, Z Zheng Proceedings of the 44th International Conference on Software Engineering …, 2022 | 4 | 2022 |
Non-gaussian lagrangian stochastic model for wind field simulation in the surface layer C Liu, L Fu, D Yang, DR Miller, J Wang Advances in Atmospheric Sciences 37, 90-104, 2020 | 3 | 2020 |
Code semantic enrichment for deep code search Z Deng, L Xu, C Liu, L Huangfu, M Yan Journal of Systems and Software 207, 111856, 2024 | 1 | 2024 |
End-to-end log statement generation at block-level Y Fu, M Yan, P He, C Liu, X Zhang, D Yang Journal of Systems and Software, 112146, 2024 | | 2024 |