iCaRL: Incremental Classifier and Representation Learning SA Rebuffi, A Kolesnikov, G Sperl, CH Lampert CVPR 2017, 2017 | 3746 | 2017 |
Learning multiple visual domains with residual adapters SA Rebuffi, H Bilen, A Vedaldi NeurIPS 2017, 2017 | 878 | 2017 |
Efficient parametrization of multi-domain deep neural networks SA Rebuffi, H Bilen, A Vedaldi CVPR 2018, 2018 | 400 | 2018 |
Fixing data augmentation to improve adversarial robustness SA Rebuffi, S Gowal, DA Calian, F Stimberg, O Wiles, T Mann arXiv preprint arXiv:2103.01946, 2021 | 248 | 2021 |
Data Augmentation Can Improve Robustness SA Rebuffi, S Gowal, DA Calian, F Stimberg, O Wiles, T Mann NeurIPS 2021, 2021 | 245 | 2021 |
Improving Robustness using Generated Data S Gowal, SA Rebuffi, O Wiles, F Stimberg, DA Calian, T Mann NeurIPS 2021, 2021 | 232 | 2021 |
A fine-grained analysis on distribution shift O Wiles, S Gowal, F Stimberg, SA Rebuffi, I Ktena, T Cemgil ICLR 2022, 2021 | 201 | 2021 |
Automatically discovering and learning new visual categories with ranking statistics K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman ICLR 2020, 2020 | 189 | 2020 |
Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing M Morlighem, J Bondzio, H Seroussi, E Rignot, E Larour, A Humbert, ... Geophysical Research Letters 43 (6), 2659-2666, 2016 | 142 | 2016 |
There and Back Again: Revisiting Backpropagation Saliency Methods SA Rebuffi, R Fong, X Ji, A Vedaldi CVPR 2020, 2020 | 133 | 2020 |
Autonovel: Automatically discovering and learning novel visual categories K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021 | 100 | 2021 |
Semi-supervised learning with scarce annotations SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020 | 52 | 2020 |
Defending against image corruptions through adversarial augmentations DA Calian, F Stimberg, O Wiles, SA Rebuffi, A Gyorgy, T Mann, S Gowal ICLR 2022, 2021 | 47 | 2021 |
Lsd-c: Linearly separable deep clusters SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 27 | 2021 |
Generative models improve fairness of medical classifiers under distribution shifts I Ktena, O Wiles, I Albuquerque, SA Rebuffi, R Tanno, AG Roy, S Azizi, ... Nature Medicine, 1-8, 2024 | 16 | 2024 |
Seasoning Model Soups for Robustness to Adversarial and Natural Distribution Shifts F Croce, SA Rebuffi, E Shelhamer, S Gowal CVPR 2023, 2023 | 12 | 2023 |
Nevis' 22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research J Bornschein, A Galashov, R Hemsley, A Rannen-Triki, Y Chen, ... Journal of Machine Learning Research 24 (308), 1-77, 2023 | 11 | 2023 |
Revisiting adapters with adversarial training SA Rebuffi, F Croce, S Gowal ICLR 2023, 2022 | 9 | 2022 |
A fine-grained analysis of robustness to distribution shifts O Wiles, S Gowal, F Stimberg, SA Rebuffi, I Ktena, KD Dvijotham, ... NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and …, 2021 | 2 | 2021 |
Adversarially self-supervised pre-training improves accuracy and robustness SA Rebuffi, O Wiles, E Shelhamer, S Gowal | 1 | 2023 |