关注
Sekeun Kim
Sekeun Kim
Massachusetts General Hospital / Harvard Medical School
在 mgh.harvard.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Automatic Segmentation of LV and RV in Cardiac MRI
Y Jang, Y Hong, S Ha, S Kim, HJ Chang
In MICCAI Workshop on Statistical Atlases and Computational Models of the …, 2017
922017
Radiology-llama2: Best-in-class large language model for radiology
Z Liu, Y Li, P Shu, A Zhong, L Yang, C Ju, Z Wu, C Ma, J Luo, C Chen, ...
arXiv preprint arXiv:2309.06419, 2023
602023
Fully automatic segmentation of coronary arteries based on deep neural network in intravascular ultrasound images
S Kim, Y Jang, B Jeon, Y Hong, H Shim, H Chang
Intravascular Imaging and Computer Assisted Stenting and Large-Scale …, 2018
472018
Ma-sam: Modality-agnostic sam adaptation for 3d medical image segmentation
C Chen, J Miao, D Wu, A Zhong, Z Yan, S Kim, J Hu, Z Liu, L Sun, X Li, ...
Medical Image Analysis, 103310, 2024
402024
Three-dimensional cardiomyocytes structure revealed by diffusion tensor imaging and its validation using a tissue-clearing technique
SE Lee, C Nguyen, J Yoon, HJ Chang, S Kim, CH Kim, D Li
Scientific reports 8 (1), 6640, 2018
372018
Artificial intelligence and echocardiography
YE Yoon, S Kim, HJ Chang
Journal of Cardiovascular Imaging 29 (3), 193, 2021
302021
Tailoring large language models to radiology: A preliminary approach to llm adaptation for a highly specialized domain
Z Liu, A Zhong, Y Li, L Yang, C Ju, Z Wu, C Ma, P Shu, C Chen, S Kim, ...
International Workshop on Machine Learning in Medical Imaging, 464-473, 2023
222023
Deep learning on multiphysical features and hemodynamic modeling for abdominal aortic aneurysm growth prediction
S Kim, Z Jiang, BA Zambrano, Y Jang, S Baek, S Yoo, HJ Chang
IEEE Transactions on Medical Imaging 42 (1), 196-208, 2022
172022
A Cascaded Two-step Approach For Segmentation of Thoracic Organs
SK Yeonggul Jang
IEEE International Symposium on Biomedical Imaging (ISBI 2019), 2019
12*2019
Medivista-sam: Zero-shot medical video analysis with spatio-temporal sam adaptation
S Kim, K Kim, J Hu, C Chen, Z Lyu, R Hui, S Kim, Z Liu, A Zhong, X Li, ...
arXiv preprint arXiv:2309.13539, 2023
82023
Fully automated quantification of cardiac chamber and function assessment in 2-D echocardiography: clinical feasibility of deep learning-based algorithms
S Kim, HB Park, J Jeon, R Arsanjani, R Heo, SE Lee, I Moon, SK Yoo, ...
The International Journal of Cardiovascular Imaging 38 (5), 1047-1059, 2022
82022
Full quantification of left ventricle using deep multitask network with combination of 2D and 3D convolution on 2D+ t cine MRI
Y Jang, S Kim, H Shim, HJ Chang
Statistical Atlases and Computational Models of the Heart. Atrial …, 2019
62019
Coronary luminal and wall mask prediction using convolutional neural network
Y Hong, YM Hong, Y Jang, S Kim, B Jeon, S Jung, S Ha, D Han, H Shim, ...
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017 …, 2017
52017
Reconnection of fragmented parts of coronary arteries using local geometric features in X-ray angiography images
K Han, J Jeon, Y Jang, S Jung, S Kim, H Shim, B Jeon, HJ Chang
Computers in biology and medicine 141, 105099, 2022
22022
Multi-task Learning for Hierarchically-Structured Images: Study on Echocardiogram View Classification
J Charton, H Ren, S Kim, CM Gonzalez, J Khambhati, J Cheng, ...
International Workshop on Advances in Simplifying Medical Ultrasound, 185-194, 2023
12023
Bayesian approaches for Quantifying Clinicians' Variability in Medical Image Quantification
J Jeon, Y Jang, Y Hong, H Shim, S Kim
arXiv preprint arXiv:2207.01868, 2022
12022
Diagnostic accuracy of a novel on-site virtual fractional flow reserve parallel computing system
HB Park, Y Jang, R Arsanjani, MT Nguyen, SE Lee, B Jeon, S Jung, ...
Yonsei medical journal 61 (2), 137-144, 2020
12020
Validation of cardiac diffusion tensor MRI using transparent tissue preparation (CLARITY) with 3D optical microscopy
C Nguyen, SE Lee, J Yoon, HJ Chang, S Kim, CH Kim, D Li
Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 546, 2017
12017
Adaptation of Prompt-enabled Segment-Anything-Model Enhance the Accuracy and Generalizability of Cine Cardiac Magnetic Resonance Segmentation
Z Chen, S Kim, H Ren, X Li
American Heart Association’s (AHA) annual Scientific Sessions, 2024
2024
Autonomous Robotic Ultrasound System for Liver Follow-up Diagnosis: Pilot Phantom Study
T Zhang, S Kim, J Charton, H Ma, K Kim, N Li, Q Li
arXiv preprint arXiv:2405.05787, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20