Artificial intelligence for science in quantum, atomistic, and continuum systems X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie, M Liu, Y Lin, Z Xu, K Yan, ... arXiv preprint arXiv:2307.08423, 2023 | 81 | 2023 |
Distilling Model Failures as Directions in Latent Space S Jain, H Lawrence, A Moitra, A Madry arXiv preprint arXiv:2206.14754, 2022 | 63 | 2022 |
Minimax regret of switching-constrained online convex optimization: No phase transition L Chen, Q Yu, H Lawrence, A Karbasi Advances in Neural Information Processing Systems 33, 3477-3486, 2020 | 25 | 2020 |
Implicit Bias of Linear Equivariant Networks H Lawrence, K Georgiev, A Dienes, BT Kiani arXiv preprint arXiv:2110.06084, 2021 | 14 | 2021 |
Phase retrieval with holography and untrained priors: Tackling the challenges of low-photon nanoscale imaging H Lawrence, DA Barmherzig, H Li, M Eickenberg, M Gabrié arXiv preprint arXiv:2012.07386, 2020 | 13 | 2020 |
Self-supervised learning with lie symmetries for partial differential equations G Mialon, Q Garrido, H Lawrence, D Rehman, Y LeCun, B Kiani Advances in Neural Information Processing Systems 36, 28973-29004, 2023 | 8 | 2023 |
GULP: a prediction-based metric between representations E Boix-Adsera, H Lawrence, G Stepaniants, P Rigollet Advances in Neural Information Processing Systems 35, 7115-7127, 2022 | 7 | 2022 |
Low-rank Toeplitz matrix estimation via random ultra-sparse rulers H Lawrence, J Li, C Musco, C Musco ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 5 | 2020 |
Equivariant Frames and the Impossibility of Continuous Canonicalization N Dym, H Lawrence, JW Siegel arXiv preprint arXiv:2402.16077, 2024 | 4 | 2024 |
On the hardness of learning under symmetries BT Kiani, T Le, H Lawrence, S Jegelka, M Weber arXiv preprint arXiv:2401.01869, 2024 | 3 | 2024 |
Toeplitz Low-Rank Approximation with Sublinear Query Complexity M Kapralov, H Lawrence, M Makarov, C Musco, K Sheth Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms …, 2023 | 2 | 2023 |
Barron's Theorem for Equivariant Networks H Lawrence NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022 | 2 | 2022 |
Low-Photon Holographic Phase Retrieval via a Deep Decoder Neural Network H Lawrence, DA Barmherzig, M Eickenberg, M Gabrie Optical Sensors, JTu5A. 19, 2021 | 2 | 2021 |
Positional Encodings as Group Representations: A Unified Framework D Lim, H Lawrence, NT Huang, EH Thiede | 1 | 2023 |
Learning Polynomial Problems with -Equivariance H Lawrence, MT Harris The Twelfth International Conference on Learning Representations, 2023 | | 2023 |
Practical Phase Retrieval: Low-Photon Holography with Untrained Priors H Lawrence, D Barmherzig, H Li, M Eickenberg, M Gabrié | | 2020 |