Evaluating robustness of counterfactual explanations A Artelt, V Vaquet, R Velioglu, F Hinder, J Brinkrolf, M Schilling, ... 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-09, 2021 | 42 | 2021 |
Interpretable machine learning with reject option J Brinkrolf, B Hammer at-Automatisierungstechnik 66 (4), 283-290, 2018 | 20 | 2018 |
Differential privacy for learning vector quantization J Brinkrolf, C Göpfert, B Hammer Neurocomputing 342, 125-136, 2019 | 13 | 2019 |
Model-based explanations of concept drift F Hinder, V Vaquet, J Brinkrolf, B Hammer Neurocomputing 555, 126640, 2023 | 7 | 2023 |
Fast non-parametric conditional density estimation using moment trees F Hinder, V Vaquet, J Brinkrolf, B Hammer 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021 | 7 | 2021 |
On the Hardness and Necessity of Supervised Concept Drift Detection. F Hinder, V Vaquet, J Brinkrolf, B Hammer ICPRAM, 164-175, 2023 | 6 | 2023 |
Taking care of our drinking water: dealing with sensor faults in water distribution networks V Vaquet, A Artelt, J Brinkrolf, B Hammer International Conference on Artificial Neural Networks, 682-693, 2022 | 6 | 2022 |
Explaining reject options of learning vector quantization classifiers A Artelt, J Brinkrolf, R Visser, B Hammer arXiv preprint arXiv:2202.07244, 2022 | 5 | 2022 |
A shape-based method for concept drift detection and signal denoising F Hinder, J Brinkrolf, V Vaquet, B Hammer 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-08, 2021 | 5 | 2021 |
Federated Learning Vector Quantization. J Brinkrolf, B Hammer ESANN, 2021 | 5 | 2021 |
Probabilistic extension and reject options for pairwise LVQ J Brinkrolf, B Hammer 2017 12th International Workshop on Self-Organizing Maps and Learning Vector …, 2017 | 5 | 2017 |
On the change of decision boundary and loss in learning with concept drift F Hinder, V Vaquet, J Brinkrolf, B Hammer International Symposium on Intelligent Data Analysis, 182-194, 2023 | 4 | 2023 |
Localization of concept drift: Identifying the drifting datapoints F Hinder, V Vaquet, J Brinkrolf, A Artelt, B Hammer 2022 International Joint Conference on Neural Networks (IJCNN), 1-9, 2022 | 4 | 2022 |
Efficient kernelisation of discriminative dimensionality reduction A Schulz, J Brinkrolf, B Hammer Neurocomputing 268, 34-41, 2017 | 4 | 2017 |
Time integration and reject options for probabilistic output of pairwise LVQ J Brinkrolf, B Hammer Neural Computing and Applications 32 (24), 18009-18022, 2020 | 3 | 2020 |
Online learning on non-stationary data streams for image recognition using deep embeddings V Vaquet, F Hinder, J Vaquet, J Brinkrolf, B Hammer 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021 | 2 | 2021 |
Combining self-labeling and demand based active learning for non-stationary data streams V Vaquet, F Hinder, J Brinkrolf, B Hammer arXiv preprint arXiv:2302.04141, 2023 | 1 | 2023 |
On the change of decision boundaries and loss in learning with concept drift F Hinder, V Vaquet, J Brinkrolf, B Hammer arXiv preprint arXiv:2212.01223, 2022 | 1 | 2022 |
Feature Selection for Trustworthy Regression Using Higher Moments F Hinder, J Brinkrolf, B Hammer International Conference on Artificial Neural Networks, 76-87, 2022 | 1 | 2022 |
Federated learning vector quantization for dealing with drift between nodes V Vaquet, F Hinder, J Brinkrolf, P Menz, U Seiffert, B Hammer Bruges, 2022 | 1 | 2022 |