关注
Johannes Brinkrolf
Johannes Brinkrolf
在 techfak.uni-bielefeld.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Evaluating robustness of counterfactual explanations
A Artelt, V Vaquet, R Velioglu, F Hinder, J Brinkrolf, M Schilling, ...
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-09, 2021
422021
Interpretable machine learning with reject option
J Brinkrolf, B Hammer
at-Automatisierungstechnik 66 (4), 283-290, 2018
202018
Differential privacy for learning vector quantization
J Brinkrolf, C Göpfert, B Hammer
Neurocomputing 342, 125-136, 2019
132019
Model-based explanations of concept drift
F Hinder, V Vaquet, J Brinkrolf, B Hammer
Neurocomputing 555, 126640, 2023
72023
Fast non-parametric conditional density estimation using moment trees
F Hinder, V Vaquet, J Brinkrolf, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021
72021
On the Hardness and Necessity of Supervised Concept Drift Detection.
F Hinder, V Vaquet, J Brinkrolf, B Hammer
ICPRAM, 164-175, 2023
62023
Taking care of our drinking water: dealing with sensor faults in water distribution networks
V Vaquet, A Artelt, J Brinkrolf, B Hammer
International Conference on Artificial Neural Networks, 682-693, 2022
62022
Explaining reject options of learning vector quantization classifiers
A Artelt, J Brinkrolf, R Visser, B Hammer
arXiv preprint arXiv:2202.07244, 2022
52022
A shape-based method for concept drift detection and signal denoising
F Hinder, J Brinkrolf, V Vaquet, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-08, 2021
52021
Federated Learning Vector Quantization.
J Brinkrolf, B Hammer
ESANN, 2021
52021
Probabilistic extension and reject options for pairwise LVQ
J Brinkrolf, B Hammer
2017 12th International Workshop on Self-Organizing Maps and Learning Vector …, 2017
52017
On the change of decision boundary and loss in learning with concept drift
F Hinder, V Vaquet, J Brinkrolf, B Hammer
International Symposium on Intelligent Data Analysis, 182-194, 2023
42023
Localization of concept drift: Identifying the drifting datapoints
F Hinder, V Vaquet, J Brinkrolf, A Artelt, B Hammer
2022 International Joint Conference on Neural Networks (IJCNN), 1-9, 2022
42022
Efficient kernelisation of discriminative dimensionality reduction
A Schulz, J Brinkrolf, B Hammer
Neurocomputing 268, 34-41, 2017
42017
Time integration and reject options for probabilistic output of pairwise LVQ
J Brinkrolf, B Hammer
Neural Computing and Applications 32 (24), 18009-18022, 2020
32020
Online learning on non-stationary data streams for image recognition using deep embeddings
V Vaquet, F Hinder, J Vaquet, J Brinkrolf, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021
22021
Combining self-labeling and demand based active learning for non-stationary data streams
V Vaquet, F Hinder, J Brinkrolf, B Hammer
arXiv preprint arXiv:2302.04141, 2023
12023
On the change of decision boundaries and loss in learning with concept drift
F Hinder, V Vaquet, J Brinkrolf, B Hammer
arXiv preprint arXiv:2212.01223, 2022
12022
Feature Selection for Trustworthy Regression Using Higher Moments
F Hinder, J Brinkrolf, B Hammer
International Conference on Artificial Neural Networks, 76-87, 2022
12022
Federated learning vector quantization for dealing with drift between nodes
V Vaquet, F Hinder, J Brinkrolf, P Menz, U Seiffert, B Hammer
Bruges, 2022
12022
系统目前无法执行此操作,请稍后再试。
文章 1–20