关注
Pan Kessel
Pan Kessel
在 tu-berlin.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
SchNetPack: A deep learning toolbox for atomistic systems
KT Schütt, P Kessel, M Gastegger, KA Nicoli, A Tkatchenko, KR Müller
Journal of chemical theory and computation 15 (1), 448-455, 2018
3912018
Explanations can be manipulated and geometry is to blame
AK Dombrowski, M Alber, C Anders, M Ackermann, KR Müller, P Kessel
Advances in neural information processing systems 32, 2019
3462019
Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal
N Boulanger, P Kessel, E Skvortsov, M Taronna
Journal of Physics A: Mathematical and Theoretical 49 (9), 095402, 2016
1202016
Asymptotically unbiased estimation of physical observables with neural samplers
KA Nicoli, S Nakajima, N Strodthoff, W Samek, KR Müller, P Kessel
Physical Review E 101 (2), 023304, 2020
1022020
Estimation of thermodynamic observables in lattice field theories with deep generative models
KA Nicoli, CJ Anders, L Funcke, T Hartung, K Jansen, P Kessel, ...
Physical review letters 126 (3), 032001, 2021
1012021
Fairwashing explanations with off-manifold detergent
C Anders, P Pasliev, AK Dombrowski, KR Müller, P Kessel
International Conference on Machine Learning, 314-323, 2020
952020
Towards robust explanations for deep neural networks
AK Dombrowski, CJ Anders, KR Müller, P Kessel
Pattern Recognition 121, 108194, 2022
692022
Higher spins and matter interacting in dimension three
P Kessel, GL Gómez, E Skvortsov, M Taronna
Journal of High Energy Physics 2015 (11), 1-107, 2015
382015
Metric-and frame-like higher-spin gauge theories in three dimensions
S Fredenhagen, P Kessel
Journal of Physics A: Mathematical and Theoretical 48 (3), 035402, 2014
362014
Cubic interactions of massless bosonic fields in three dimensions. II. Parity-odd and Chern-Simons vertices
P Kessel, K Mkrtchyan
Physical Review D 97 (10), 106021, 2018
332018
Learning trivializing gradient flows for lattice gauge theories
S Bacchio, P Kessel, S Schaefer, L Vaitl
Physical Review D 107 (5), L051504, 2023
222023
Gradients should stay on path: better estimators of the reverse-and forward KL divergence for normalizing flows
L Vaitl, KA Nicoli, S Nakajima, P Kessel
Machine Learning: Science and Technology 3 (4), 045006, 2022
182022
Detecting and mitigating mode-collapse for flow-based sampling of lattice field theories
KA Nicoli, CJ Anders, T Hartung, K Jansen, P Kessel, S Nakajima
Physical Review D 108 (11), 114501, 2023
152023
Diffeomorphic explanations with normalizing flows
AK Dombrowski, JE Gerken, P Kessel
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit …, 2021
152021
A machine-learning-based surrogate model of Mars’ thermal evolution
S Agarwal, N Tosi, D Breuer, S Padovan, P Kessel, G Montavon
Geophysical Journal International 222 (3), 1656-1670, 2020
132020
The very basics of higher-spin theory
P Kessel
arXiv preprint arXiv:1702.03694, 2017
122017
Path-gradient estimators for continuous normalizing flows
L Vaitl, KA Nicoli, S Nakajima, P Kessel
International conference on machine learning, 21945-21959, 2022
102022
Deep learning for surrogate modeling of two-dimensional mantle convection
S Agarwal, N Tosi, P Kessel, D Breuer, G Montavon
Physical Review Fluids 6 (11), 113801, 2021
102021
Toward constraining Mars' thermal evolution using machine learning
S Agarwal, N Tosi, P Kessel, S Padovan, D Breuer, G Montavon
Earth and Space Science 8 (4), e2020EA001484, 2021
102021
Machine learning of thermodynamic observables in the presence of mode collapse
KA Nicoli, C Anders, L Funcke, T Hartung, K Jansen, P Kessel, ...
arXiv preprint arXiv:2111.11303, 2021
92021
系统目前无法执行此操作,请稍后再试。
文章 1–20