关注
Christian A. Hammerschmidt
Christian A. Hammerschmidt
其他姓名Christian Albert Hammerschmidt, Chris A. Hammerschmidt
APTA Technologies B.V.
在 tudelft.nl 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Generating multi-categorical samples with generative adversarial networks
R Camino, C Hammerschmidt, R State
arXiv preprint arXiv:1807.01202, 2018
852018
Improving missing data imputation with deep generative models
RD Camino, R Hammerschmidt, CA, State
arXiv preprint arXiv:1902.10666, 2019
62*2019
BotGM: Unsupervised graph mining to detect botnets in traffic flows
S Lagraa, J François, A Lahmadi, M Miner, C Hammerschmidt, R State
Cyber Security in Networking Conference (CSNet), 2017 1st, 1-8, 2017
382017
flexfringe: A Passive Automaton Learning Package
SE Verwer, C Hammerschmidt
Software Maintenance and Evolution (ICSME), 2017 IEEE International …, 2017
352017
Radu State. Improving missing data imputation with deep generative models
RD Camino, CA Hammerschmidt
arXiv preprint arXiv:1902.10666, 2019
23*2019
Learning behavioral fingerprints from Netflows using Timed Automata
G Pellegrino, Q Lin, C Hammerschmidt, S Verwer
Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium on …, 2017
222017
Short-term time series forecasting with regression automata
Q Lin, C Hammerschmidt, G Pellegrino, S Verwer
ACM SIGKDD 2016 Workshop on Mining and Learning from Time Series (MiLeTS), 2016
212016
R. State,“Improving missing data imputation with deep generative models,”
RD Camino, CA Hammerschmidt
arXiv preprint arXiv:1902.10666, 2019
192019
Federated learning for cyber security: SOC collaboration for malicious URL detection
E Khramtsova, C Hammerschmidt, S Lagraa, R State
2020 IEEE 40th International Conference on Distributed Computing Systems …, 2020
182020
Behavioral clustering of non-stationary IP flow record data
C Hammerschmidt, S Marchal, R State, S Verwer
Network and Service Management (CNSM), 2016 12th International Conference on …, 2016
18*2016
Interpreting Finite Automata for Sequential Data
CA Hammerschmidt, S Verwer, Q Lin, R State
arXiv preprint arXiv:1611.07100, 2016
15*2016
Efficient Learning of Communication Profiles from IP Flow Records
C Hammerschmidt, S Marchal, R State, G Pellegrino, S Verwer
Local Computer Networks (LCN), 2016 IEEE 41st Conference on, 559-562, 2016
152016
Beyond labeling: Using clustering to build network behavioral profiles of malware families
A Nadeem, C Hammerschmidt, CH Gañán, S Verwer
Malware analysis using artificial intelligence and deep learning, 381-409, 2021
122021
Reliable Machine Learning for Networking: Key Issues and Approaches
CA Hammerschmidt, S Garcia, S Verwer, R State
Local Computer Networks (LCN), 2017 IEEE 42nd Conference on, 167-170, 2017
112017
The robust malware detection challenge and greedy random accelerated multi-bit search
S Verwer, A Nadeem, C Hammerschmidt, L Bliek, A Al-Dujaili, ...
Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security …, 2020
102020
Working with deep generative models and tabular data imputation
RD Camino, C Hammerschmidt
First Workshop on the Art of Learning with Missing Values (Artemiss), 2020
72020
An experimental analysis of fraud detection methods in enterprise telecommunication data using unsupervised outlier ensembles
G Kaiafas, C Hammerschmidt, ...
IEEE Symposium on Integrated Network and Service Management (IM), 37-42, 2019
6*2019
Learning deterministic finite automata from infinite alphabets
G Pellegrino, C Hammerschmidt, Q Lin, S Verwer
International Conference on Grammatical Inference, 120-131, 2017
62017
Flexfringe: Modeling software behavior by learning probabilistic automata
S Verwer, C Hammerschmidt
arXiv preprint arXiv:2203.16331, 2022
52022
Oversampling tabular data with deep generative models: Is it worth the effort?
RD Camino, CA Hammerschmidt
PMLR, 2020
52020
系统目前无法执行此操作,请稍后再试。
文章 1–20