Strategies and software for machine learning accelerated discovery in transition metal chemistry A Nandy, C Duan, JP Janet, S Gugler, HJ Kulik Industrial & Engineering Chemistry Research 57 (42), 13973-13986, 2018 | 150 | 2018 |
Gaussian process-based refinement of dispersion corrections J Proppe, S Gugler, M Reiher Journal of Chemical Theory and Computation 15 (11), 6046-6060, 2019 | 55 | 2019 |
Enumeration of de novo inorganic complexes for chemical discovery and machine learning S Gugler, JP Janet, HJ Kulik Molecular Systems Design & Engineering 5 (1), 139-152, 2020 | 42 | 2020 |
Quantum chemical roots of machine-learning molecular similarity descriptors S Gugler, M Reiher Journal of Chemical Theory and Computation 18 (11), 6670-6689, 2022 | 13 | 2022 |
Reiher C Brunken, KS Csizi, SA Grimmel, S Gugler, JG Sobez, M Steiner, ... M. qcscine/readuct: Release 4 (0), 2022 | 9 | 2022 |
Ligand additivity relationships enable efficient exploration of transition metal chemical space N Arunachalam, S Gugler, MG Taylor, C Duan, A Nandy, JP Janet, ... The Journal of Chemical Physics 157 (18), 2022 | 8 | 2022 |
qcscine/puffin: Release 1.2. 0 M Bensberg, C Brunken, KS Csizi, SA Grimmel, S Gugler, JG Sobez, ... Zenodo, 2023 | 5 | 2023 |
qcscine/readuct: Release 3.0. 0 C Brunken, KS Csizi, SA Grimmel, S Gugler, JG Sobez, M Steiner, ... ETH Zurich, Laboratory of Physical Chemistry, 2021 | 4 | 2021 |
Molecular relaxation by reverse diffusion with time step prediction K Kahouli, SSP Hessmann, KR Müller, S Nakajima, S Gugler, ... Machine Learning: Science and Technology, 2024 | 1 | 2024 |
qcscine/utilities: Release 7.0. 0 A Baiardi, M Bensberg, F Bosia, C Brunken, KS Csizi, R Feldmann, ... CERN, 2023 | 1 | 2023 |
SCINE READUCT 4.1. 0 C BRUNKEN, KS CSIZI, S GRIMMEL, S GUGLER, J SOBEZ, M STEINER, ... | 1 | 2022 |
Supporting Information: SOED Python Code S Gugler, M Reiher CERN, 2024 | | 2024 |
qcscine/readuct: Release 5.0. 0 M Bensberg, C Brunken, KS Csizi, SA Grimmel, S Gugler, JG Sobez, ... Zenodo, 2023 | | 2023 |
Machine learning with physics-based descriptors for quantum chemistry S Gugler ETH Zurich, 2023 | | 2023 |
SCINE READUCT 5.1. 0 M BENSBERG, C BRUNKEN, KS CSIZI, S GRIMMEL, S GUGLER, ... | | 2023 |
Supporting Information: Quantum Chemical Roots of Machine-Learning Molecular Similarity Descriptors S Gugler, M Reiher Zenodo, 2022 | | 2022 |
Quantum chemical roots of machine-learning molecular similarity S Gugler, M Reiher arXiv preprint arXiv:2207.03599, 2022 | | 2022 |
Supporting Information for Journal Article" Gaussian Process-Based Refinement of Dispersion Corrections" J Proppe, S Gugler, M Reiher Zenodo, 2019 | | 2019 |
Accelerating Inorganic Discovery with Machine Learning and Automation H Kulik, JP Janet, A Nandy, C Duan, S Gugler 2018 AIChE Annual Meeting, 2018 | | 2018 |
Strategies and Software for Accelerating Inorganic Molecular Design H Kulik, JP Janet, C Duan, A Nandy, S Gugler 2018 AIChE Annual Meeting, 2018 | | 2018 |