Hopfield networks is all you need H Ramsauer, B Schäfl, J Lehner, P Seidl, M Widrich, T Adler, L Gruber, ... International Conference on Learning Representations, 2021 | 463 | 2021 |
Modern hopfield networks and attention for immune repertoire classification M Widrich, B Schäfl, M Pavlović, H Ramsauer, L Gruber, M Holzleitner, ... Advances in Neural Information Processing Systems 33, 18832-18845, 2020 | 117 | 2020 |
Modern Hopfield Networks as Memory for Iterative Learning on Tabular Data B Schäfl, L Gruber, A Bitto-Nemling, S Hochreiter Associative Memory & Hopfield Networks in 2023, 2023 | 24* | 2023 |
DeepRC: immune repertoire classification with attention-based deep massive multiple instance learning M Widrich, B Schäfl, M Pavlović, GK Sandve, S Hochreiter, V Greiff, ... BioRxiv 2020, 038158, 2020 | 14 | 2020 |
A GAN based solver of black-box inverse problems M Gillhofer, H Ramsauer, J Brandstetter, B Schäfl, S Hochreiter NeurIPS 2019 Workshop on Solving Inverse Problems with Deep Networks, 2019 | 3 | 2019 |
G-Signatures: Global Graph Propagation With Randomized Signatures B Schäfl, L Gruber, J Brandstetter, S Hochreiter arXiv preprint arXiv:2302.08811, 2023 | 2 | 2023 |
Utilizing Explicit and Implicit Memory in Deep Neural Networks/submitted by Bernhard Franz Schäfl BF Schäfl | | 2023 |
An LSTM-based approach for coiled-coil domain prediction B Schäfl Universität Linz, 2018 | | 2018 |