关注
Stephen Ni-Hahn (né Hahn)
Stephen Ni-Hahn (né Hahn)
PhD Student, Duke University
在 duke.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep learning enables structured illumination microscopy with low light levels and enhanced speed
L Jin, B Liu, F Zhao, S Hahn, B Dong, R Song, TC Elston, Y Xu, KM Hahn
Nature communications 11 (1), 1934, 2020
2122020
Bachmmachine: An interpretable and scalable model for algorithmic harmonization for four-part baroque chorales
Y Zhu, S Hahn, S Mak, Y Jiang, C Rudin
arXiv preprint arXiv:2109.07623, 2021
42021
An Interpretable, Flexible, and Interactive Probabilistic Framework for Melody Generation
S Hahn, R Zhu, S Mak, C Rudin, Y Jiang
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
32023
SentHYMNent: An Interpretable and Sentiment-Driven Model for Algorithmic Melody Harmonization
S Hahn, J Yin, R Zhu, W Xu, Y Jiang, S Mak, C Rudin
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024
2024
A New Dataset, Notation Software, and Representation for Computational Schenkerian Analysis
S Ni-Hahn, W Xu, J Yin, R Zhu, S Mak, Y Jiang, C Rudin
arXiv preprint arXiv:2408.07184, 2024
2024
BacHMMachine: An Interpretable and Scalable Model for Algorithmic Harmonization
Y Zhu, S Hahn, S Mak, Y Jiang, C Rudin
arXiv preprint arXiv:2109.07623, 2021
2021
Rapid and Extreme Low-light Superresolution Imaging via Artificial Intelligence
B Liu, L Jin, B Dong, R Song, F Zhao, S Hahn, TC Elston, Y Xu, KM Hahn
Biophysical Journal 118 (3), 167a, 2020
2020
系统目前无法执行此操作,请稍后再试。
文章 1–7