Multivariate statistical process control charts: an overview S Bersimis, S Psarakis, J Panaretos Quality and Reliability engineering international 23 (5), 517-543, 2007 | 849 | 2007 |
Monitoring the coefficient of variation using EWMA charts P Castagliola, G Celano, S Psarakis Journal of Quality Technology 43 (3), 249-265, 2011 | 211 | 2011 |
Some recent developments on the effects of parameter estimation on control charts S Psarakis, AK Vyniou, P Castagliola Quality and Reliability Engineering International 30 (8), 1113-1129, 2014 | 194 | 2014 |
SPC procedures for monitoring autocorrelated processes S Psarakis, GEA Papaleonida Quality Technology & Quantitative Management 4 (4), 501-540, 2007 | 137 | 2007 |
Review of multinomial and multiattribute quality control charts E Topalidou, S Psarakis Quality and Reliability Engineering International 25 (7), 773-804, 2009 | 126 | 2009 |
Monitoring the coefficient of variation using a variable sampling interval control chart P Castagliola, A Achouri, H Taleb, G Celano, S Psarakis Quality and Reliability Engineering International 29 (8), 1135-1149, 2013 | 111 | 2013 |
EWMA chart and measurement error P Maravelakis, J Panaretos, S Psarakis Journal of Applied Statistics 31 (4), 445-455, 2004 | 111 | 2004 |
Monitoring the coefficient of variation using control charts with run rules P Castagliola, A Achouri, H Taleb, G Celano, S Psarakis Quality Technology & Quantitative Management 10 (1), 75-94, 2013 | 103 | 2013 |
Monitoring the coefficient of variation using a variable sample size control chart P Castagliola, A Achouri, H Taleb, G Celano, S Psarakis The International Journal of Advanced Manufacturing Technology 80, 1561-1576, 2015 | 94 | 2015 |
A review of machine learning kernel methods in statistical process monitoring A Apsemidis, S Psarakis, JM Moguerza Computers & Industrial Engineering 142, 106376, 2020 | 84 | 2020 |
Exploratory factor analysis for the Hirsch index, 17 h-type variants, and some traditional bibliometric indicators M Schreiber, CC Malesios, S Psarakis Journal of Informetrics 6 (3), 347-358, 2012 | 84 | 2012 |
Multivariate statistical process control charts and the problem of interpretation: a short overview and some applications in industry S Bersimis, J Panaretos, S Psarakis arXiv preprint arXiv:0901.2880, 2009 | 80 | 2009 |
An examination of the robustness to non normality of the EWMA control charts for the dispersion PE Maravelakis, J Panaretos, S Psarakis Communications in Statistics—Simulation and Computation® 34 (4), 1069-1079, 2005 | 79 | 2005 |
Monitoring nonlinear profiles using support vector machines JM Moguerza, A Muñoz, S Psarakis Progress in Pattern Recognition, Image Analysis and Applications: 12th …, 2007 | 77 | 2007 |
The folded t distribution S Psarakis, J Panaretoes Communications in Statistics-Theory and Methods 19 (7), 2717-2734, 1990 | 69 | 1990 |
The use of neural networks in statistical process control charts S Psarakis Quality and Reliability Engineering International 27 (5), 641-650, 2011 | 67 | 2011 |
Identifying the out of control variable in a multivariate control chart PE Maravelakis, S Bersimis, J Panaretos, S Psarakis Communications in Statistics-Theory and methods 31 (12), 2391-2408, 2002 | 65 | 2002 |
Effect of estimation of the process parameters on the control limits of the univariate control charts for process dispersion PE Maravelakis, J Panaretos, S Psarakis Communications in Statistics-Simulation and Computation 31 (3), 443-461, 2002 | 65 | 2002 |
Adaptive control charts: recent developments and extensions S Psarakis Quality and Reliability Engineering International 31 (7), 1265-1280, 2015 | 64 | 2015 |
The application of multivariate statistical process monitoring in non-industrial processes S Bersimis, A Sgora, S Psarakis Quality Technology & Quantitative Management 15 (4), 526-549, 2018 | 57 | 2018 |