关注
Lorena Qendro
Lorena Qendro
Nokia Bell Labs, University of Cambridge
在 nokia-bell-labs.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Deepx: A software accelerator for low-power deep learning inference on mobile devices
ND Lane, S Bhattacharya, P Georgiev, C Forlivesi, L Jiao, L Qendro, ...
2016 15th ACM/IEEE International Conference on Information Processing in …, 2016
6422016
Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning
ND Lane, P Georgiev, L Qendro
Proceedings of the 2015 ACM international joint conference on pervasive and …, 2015
4172015
ePerceptive: energy reactive embedded intelligence for batteryless sensors
A Montanari, M Sharma, D Jenkus, M Alloulah, L Qendro, F Kawsar
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 382-394, 2020
342020
Uncertainty-aware covid-19 detection from imbalanced sound data
T Xia, J Han, L Qendro, T Dang, C Mascolo
arXiv preprint arXiv:2104.02005, 2021
312021
Early exit ensembles for uncertainty quantification
L Qendro, A Campbell, P Lio, C Mascolo
Machine Learning for Health, 181-195, 2021
302021
Enhancing the security & privacy of wearable brain-computer interfaces
Z Tarkhani, L Qendro, MOC Brown, O Hill, C Mascolo, A Madhavapeddy
arXiv preprint arXiv:2201.07711, 2022
92022
Kaizen: Practical self-supervised continual learning with continual fine-tuning
CI Tang, L Qendro, D Spathis, F Kawsar, C Mascolo, A Mathur
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024
82024
The benefit of the doubt: Uncertainty aware sensing for edge computing platforms
L Qendro, J Chauhan, AGCP Ramos, C Mascolo
2021 IEEE/ACM Symposium on Edge Computing (SEC), 214-227, 2021
82021
Mobile health with head-worn devices: Challenges and opportunities
A Ferlini, D Ma, L Qendro, C Mascolo
IEEE Pervasive Computing 21 (3), 52-60, 2022
72022
High frequency eeg artifact detection with uncertainty via early exit paradigm
L Qendro, A Campbell, P Liò, C Mascolo
arXiv preprint arXiv:2107.10746, 2021
72021
Stochastic-Shield: A probabilistic approach towards training-free adversarial defense in quantized cnns
L Qendro, S Ha, R de Jong, P Maji
Proceedings of the 1st Workshop on Security and Privacy for Mobile AI, 1-6, 2021
72021
Robust and efficient uncertainty aware biosignal classification via early exit ensembles
A Campbell, L Qendro, P Liò, C Mascolo
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
52022
Hybrid-edl: Improving evidential deep learning for uncertainty quantification on imbalanced data
T Xia, J Han, L Qendro, T Dang, C Mascolo
Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022
42022
Towards adversarial robustness with early exit ensembles
L Qendro, C Mascolo
2022 44th Annual International Conference of the IEEE Engineering in …, 2022
32022
Uncertainty-aware Health Diagnostics via Class-balanced Evidential Deep Learning
T Xia, T Dang, J Han, L Qendro, C Mascolo
IEEE Journal of Biomedical and Health Informatics, 2024
22024
DeepEar
ND Lane, P Georgiev, L Qendro
Proceedings of the 2015 ACM International Joint Conference on Pervasive and …, 2015
22015
Balancing Continual Learning and Fine-tuning for Human Activity Recognition
CI Tang, L Qendro, D Spathis, F Kawsar, A Mathur, C Mascolo
arXiv preprint arXiv:2401.02255, 2024
12024
Biosignal Monitoring System
SY Jang, A Ferlini, L Qendro
US Patent App. 18/508,348, 2024
2024
UR2M: Uncertainty and resource-aware event detection on microcontrollers
H Jia, YD Kwon, D Mat, N Pham, L Qendro, T Vu, C Mascolo
2024 IEEE International Conference on Pervasive Computing and Communications …, 2024
2024
Uncertainty-Informed On-Device Personalisation Using Early Exit Networks on Sensor Signals
T Fawden, L Qendro, C Mascolo
2023 31st European Signal Processing Conference (EUSIPCO), 1305-1309, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20