Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms H Xiao, K Rasul, R Vollgraf arXiv preprint arXiv:1708.07747, 2017 | 8754 | 2017 |
Contextual string embeddings for sequence labeling A Akbik, D Blythe, R Vollgraf Proceedings of the 27th international conference on computational …, 2018 | 1778 | 2018 |
FLAIR: An easy-to-use framework for state-of-the-art NLP A Akbik, T Bergmann, D Blythe, K Rasul, S Schweter, R Vollgraf Proceedings of the 2019 conference of the North American chapter of the …, 2019 | 1049 | 2019 |
Pooled contextualized embeddings for named entity recognition A Akbik, T Bergmann, R Vollgraf Proceedings of the 2019 Conference of the North American Chapter of the …, 2019 | 337 | 2019 |
Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting K Rasul, C Seward, I Schuster, R Vollgraf International Conference on Machine Learning, 8857-8868, 2021 | 237 | 2021 |
Texture synthesis with spatial generative adversarial networks N Jetchev, U Bergmann, R Vollgraf arXiv preprint arXiv:1611.08207, 2016 | 224 | 2016 |
Multivariate probabilistic time series forecasting via conditioned normalizing flows K Rasul, AS Sheikh, I Schuster, U Bergmann, R Vollgraf arXiv preprint arXiv:2002.06103, 2020 | 183 | 2020 |
Learning texture manifolds with the periodic spatial GAN U Bergmann, N Jetchev, R Vollgraf arXiv preprint arXiv:1705.06566, 2017 | 177 | 2017 |
Quadratic optimization for simultaneous matrix diagonalization R Vollgraf, K Obermayer IEEE Transactions on Signal Processing 54 (9), 3270-3278, 2006 | 140 | 2006 |
From grids to places M Franzius, R Vollgraf, L Wiskott Journal of computational neuroscience 22, 297-299, 2007 | 86 | 2007 |
Task-aware representation of sentences for generic text classification K Halder, A Akbik, J Krapac, R Vollgraf Proceedings of the 28th International Conference on Computational …, 2020 | 80 | 2020 |
Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017) H Xiao, K Rasul, R Vollgraf arXiv preprint arXiv:1708.07747 4, 2017 | 79 | 2017 |
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Aug. 28 H Xiao, K Rasul, R Vollgraf arXiv preprint cs.LG/1708.07747, 50, 2017 | 66 | 2017 |
A deep learning system for predicting size and fit in fashion e-commerce AS Sheikh, R Guigourès, E Koriagin, YK Ho, R Shirvany, R Vollgraf, ... Proceedings of the 13th ACM conference on recommender systems, 110-118, 2019 | 64 | 2019 |
Fashion DNA: merging content and sales data for recommendation and article mapping C Bracher, S Heinz, R Vollgraf arXiv preprint arXiv:1609.02489, 2016 | 58 | 2016 |
Generating high-resolution fashion model images wearing custom outfits G Yildirim, N Jetchev, R Vollgraf, U Bergmann Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 50 | 2019 |
Meta-learning for size and fit recommendation in fashion J Lasserre, AS Sheikh, E Koriagin, U Bergman, R Vollgraf, R Shirvany Proceedings of the 2020 SIAM international conference on data mining, 55-63, 2020 | 30 | 2020 |
Improved optimal linear filters for the discrimination of multichannel waveform templates for spike-sorting applications R Vollgraf, K Obermayer IEEE Signal Processing Letters 13 (3), 121-124, 2006 | 30 | 2006 |
An LSTM-based dynamic customer model for fashion recommendation S Heinz, C Bracher, R Vollgraf arXiv preprint arXiv:1708.07347, 2017 | 24 | 2017 |
Multi dimensional ICA to separate correlated sources R Vollgraf, K Obermayer Advances in neural information processing systems 14, 2001 | 24 | 2001 |