A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories D Placido*, B Yuan*, JX Hjaltelin*, C Zheng*, AD Haue, PJ Chmura, ... Nature Medicine, 1-10, 2023 | 130 | 2023 |
CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy B Yuan, C Shen, A Luna, A Korkut, DS Marks, J Ingraham, C Sander Cell systems 12 (2), 128-140. e4, 2021 | 115 | 2021 |
scPerturb: harmonized single-cell perturbation data S Peidli, TD Green, C Shen, T Gross, J Min, S Garda, B Yuan, ... Nature Methods, 1-10, 2024 | 25 | 2024 |
Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis B Yuan, D Yang, BEG Rothberg, H Chang, T Xu Scientific Reports 10 (1), 19106, 2020 | 22 | 2020 |
An Empirical Study of ML-based Phenotyping and Denoising for Improved Genomic Discovery B Yuan, F Hormozdiari, CY McLean, J Cosentino bioRxiv, 2022.11. 17.516907, 2022 | 3 | 2022 |
Inference of cell dynamics on perturbation data using adjoint sensitivity W Ji, B Yuan, C Shen, A Regev, C Sander, S Deng arXiv preprint arXiv:2104.06467, 2021 | 2 | 2021 |
Interpretable machine learning for perturbation biology J Shen, B Yuan, A Luna, A Korkut, D Marks, J Ingraham, C Sander Cancer Research 80 (16_Supplement), 2102-2102, 2020 | 1 | 2020 |
Abstract LB550: AI predicts risk of pancreatic cancer from disease trajectories using real-world electronic health records (EHRs) from Denmark and the USA D Placido, B Yuan, JX Hjaltelin, AD Haue, PJ Chmura, C Yuan, J Kim, ... Cancer Research 82 (12_Supplement), LB550-LB550, 2022 | | 2022 |
AI predicts risk of pancreatic cancer from disease trajectories using real-world electronic health records (EHRs) from Denmark and the USA D Placido, B Yuan, JX Hjaltelin, AD Haue, PJ Chmura, C Yuan, J Kim, ... CANCER RESEARCH 82 (12), 2022 | | 2022 |
Bridging interpretable AI methods to systems biology and medical informatics B Yuan Harvard University, 2022 | | 2022 |