A modern maximum-likelihood theory for high-dimensional logistic regression P Sur, EJ Candès Proceedings of the National Academy of Sciences 116 (29), 14516-14525, 2019 | 385 | 2019 |
The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled Chi-square P Sur, Y Chen, EJ Candès Probability theory and related fields 175, 487-558, 2019 | 175 | 2019 |
The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression EJ Candès, P Sur The Annals of Statistics 48 (1), 27-42, 2020 | 161 | 2020 |
A precise high-dimensional asymptotic theory for boosting and minimum--norm interpolated classifiers T Liang, P Sur The Annals of Statistics 50 (3), 1669-1695, 2022 | 98 | 2022 |
The asymptotic distribution of the MLE in high-dimensional logistic models: Arbitrary covariance Q Zhao, P Sur, EJ Candes Bernoulli 28 (3), 1835-1861, 2022 | 49 | 2022 |
Modeling bimodal discrete data using Conway-Maxwell-Poisson mixture models P Sur, G Shmueli, S Bose, P Dubey Journal of Business & Economic Statistics 33 (3), 352-365, 2015 | 29 | 2015 |
Representation via representations: Domain generalization via adversarially learned invariant representations Z Deng, F Ding, C Dwork, R Hong, G Parmigiani, P Patil, P Sur arXiv preprint arXiv:2006.11478, 2020 | 23 | 2020 |
A non-asymptotic moreau envelope theory for high-dimensional generalized linear models L Zhou, F Koehler, P Sur, DJ Sutherland, N Srebro Advances in Neural Information Processing Systems 35, 21286-21299, 2022 | 22 | 2022 |
A new central limit theorem for the augmented ipw estimator: Variance inflation, cross-fit covariance and beyond K Jiang, R Mukherjee, S Sen, P Sur arXiv preprint arXiv:2205.10198, 2022 | 20 | 2022 |
Abstracting fairness: Oracles, metrics, and interpretability C Dwork, C Ilvento, GN Rothblum, P Sur arXiv preprint arXiv:2004.01840, 2020 | 13 | 2020 |
High-dimensional asymptotics of Langevin dynamics in spiked matrix models T Liang, S Sen, P Sur arXiv preprint arXiv:2204.04476, 2022 | 11 | 2022 |
Spectrum-aware adjustment: A new debiasing framework with applications to principal components regression Y Li, P Sur arXiv preprint arXiv:2309.07810, 2023 | 9 | 2023 |
Fitting Com-Poisson mixtures to bimodal count data S Bose, G Shmueli, P Sur, P Dubey 1st International Conference on Information, Operations Management and …, 2013 | 6 | 2013 |
Additional supplementary materials for: a modern maximum-likelihood theory for high-dimensional logistic regression P Sur, EJ Candès | 4 | 2018 |
Universality in block dependent linear models with applications to nonparametric regression S Lahiry, P Sur arXiv preprint arXiv:2401.00344, 2023 | 3 | 2023 |
HEDE: Heritability estimation in high dimensions by Ensembling Debiased Estimators Y Song, X Lin, P Sur arXiv preprint arXiv:2406.11184, 2024 | 2 | 2024 |
Predictive Inference in Multi-environment Scenarios JC Duchi, S Gupta, K Jiang, P Sur arXiv preprint arXiv:2403.16336, 2024 | 2 | 2024 |
Supplemental materials for “the likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square” P Sur, Y Chen, E Candès | 2 | 2017 |
Generalization error of min-norm interpolators in transfer learning Y Song, S Bhattacharya, P Sur arXiv preprint arXiv:2406.13944, 2024 | 1 | 2024 |
Multi-Study Boosting: Theoretical Considerations for Merging vs. Ensembling C Shyr, P Sur, G Parmigiani, P Patil arXiv preprint arXiv:2207.04588, 2022 | 1 | 2022 |