Review of computational fluid dynamics for wind turbine wake aerodynamics B Sanderse, SP Pijl, B Koren Wind Energy 14 (7), 799-819, 2011 | 769 | 2011 |
Aerodynamics of wind turbine wakes B Sanderse Energy research Centre of the Netherlands, ECN-E-09-016, 2009 | 413* | 2009 |
Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations B Sanderse, B Koren Journal of Computational Physics 231 (8), 3041-3063, 2012 | 114 | 2012 |
Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations B Sanderse Journal of Computational Physics 233, 100-131, 2013 | 95 | 2013 |
Non-linearly stable reduced-order models for incompressible flow with energy-conserving finite volume methods B Sanderse Journal of Computational Physics 421, 109736, 2020 | 24 | 2020 |
Constraint-consistent Runge–Kutta methods for one-dimensional incompressible multiphase flow B Sanderse, AEP Veldman Journal of Computational Physics 384, 170-199, 2019 | 14 | 2019 |
Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations B Sanderse, IE Smith, MHW Hendrix International Journal of Multiphase Flow 95, 155-174, 2017 | 14 | 2017 |
Bayesian model calibration with interpolating polynomials based on adaptively weighted Leja nodes LMM van den Bos, B Sanderse, W Bierbooms, GJW van Bussel arXiv preprint arXiv:1802.02035, 2018 | 13 | 2018 |
Energy-conserving discretization methods for the incompressible Navier-Stokes equations: application to the simulation of wind-turbine wakes B Sanderse Technische Universiteit Eindhoven, 2013 | 13 | 2013 |
Adaptive sampling-based quadrature rules for efficient Bayesian prediction LMM van den Bos, B Sanderse, W Bierbooms Journal of Computational Physics 417, 109537, 2020 | 12 | 2020 |
An Adaptive Minimum Spanning Tree Multielement Method for Uncertainty Quantification of Smooth and Discontinuous Responses YV Halder, B Sanderse, B Koren SIAM Journal on Scientific Computing 41 (6), A3624-A3648, 2019 | 12 | 2019 |
Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations B Sanderse, R Verstappen, B Koren Journal of Computational Physics 257, 1472-1505, 2014 | 12 | 2014 |
Comparison of neural closure models for discretised PDEs H Melchers, D Crommelin, B Koren, V Menkovski, B Sanderse Computers & Mathematics with Applications 143, 94-107, 2023 | 11 | 2023 |
Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model F Gugole, LE Coffeng, W Edeling, B Sanderse, SJ de Vlas, D Crommelin PLoS computational biology 17 (9), e1009355, 2021 | 11 | 2021 |
Reduced order models for the incompressible Navier‐Stokes equations on collocated grids using a ‘discretize‐then‐project’approach SK Star, B Sanderse, G Stabile, G Rozza, J Degroote International Journal for Numerical Methods in Fluids 93 (8), 2694-2722, 2021 | 11 | 2021 |
Energy-Conserving Navier-Stokes Solver. Verification of steady laminar flows B Sanderse Energy research Centre of the Netherlands, ECN-E-11-042, 2011 | 11 | 2011 |
Machine Learning for Closure Models in Multiphase Flow Applications J Buist, B Sanderse, Y van Halder, B Koren, G van Heijst 3rd International Conference on Uncertainty Quantification in Computational …, 2019 | 10 | 2019 |
Energy-conserving neural network for turbulence closure modeling T van Gastelen, W Edeling, B Sanderse Journal of Computational Physics 508, 113003, 2024 | 9 | 2024 |
Global sensitivity analysis of model uncertainty in aeroelastic wind turbine models P Kumar, B Sanderse, K Boorsma, M Caboni Journal of Physics: Conference Series 1618 (4), 042034, 2020 | 9 | 2020 |
A minimum-dissipation time-integration strategy for large-eddy simulation of incompressible turbulent flows F Capuano, B Sanderse, E DE ANGELIS, G Coppola AIMETA 2017 proceedings of the XXIII conference of the Italian Association …, 2017 | 8 | 2017 |