关注
Antoine Benady
Antoine Benady
未知所在单位机构
在 ens-paris-saclay.fr 的电子邮件经过验证
标题
引用次数
引用次数
年份
NN‐mCRE: A modified constitutive relation error framework for unsupervised learning of nonlinear state laws with physics‐augmented neural networks
A Benady, E Baranger, L Chamoin
International Journal for Numerical Methods in Engineering 125 (8), e7439, 2024
122024
Unsupervised learning of history-dependent constitutive material laws with thermodynamically-consistent neural networks in the modified Constitutive Relation Error framework.
A Benady, E Baranger, L Chamoin
Computer Methods in Applied Mechanics and Engineering 425, pp.116967, 2024
62024
A modified constitutive relation error (mCRE) framework to learn nonlinear constitutive models from strain measurements with thermodynamics-consistent neural networks
A Benady, E Baranger, L Chamoin
XI Conference on Adaptive Modeling and Simulation, 2023
32023
Physics-informed neural networks derived from a mCRE functional for constitutive modelling
A Benady, L Chamoin, E Baranger
Artificial Intelligence and Augmented Engineering, 2022
32022
Use of physics-augmented neural networks for unsupervised learning of material constitutive relations-Comparison of the NN-Euclid and NN-mCRE methods
E Zembra, A Benady, E Baranger, L Chamoin
ENS Paris-Saclay; Centrale Supélec, 2023
22023
Experimental learning of a hyperelastic behavior with a physics-augmented neural network
C Jailin, A Benady, R Legroux, E Baranger
Experimental Mechanics, 1-17, 2024
12024
A novel DDDAS architecture combining advanced sensing and simulation technologies for effective real-time structural health monitoring
L Chamoin, E Baranger, A Benady, PÉ Charbonnel, M Diaz, ...
12023
Data-based model updating, selection, and enrichment using the modified constitutive relation error concept
L Chamoin, A Benady, S Farahbakhsh, E Baranger, M Poncelet
15th World Congress on Computational Mechanics, 2022
12022
Training an AI hyperelastic constitutive model with experimental data
C Jailin, A Benady, E Baranger
arXiv preprint arXiv:2410.16304, 2024
2024
Use of the modified constitutive relation error to learn constitutive relations
E Baranger, A Benady, L Chamoin
21st European Conference on Composite Materials, 2024
2024
Adaptive modeling and learning of material laws for effective data assimilation
L Chamoin, A Benady, S Farahbakhsh, E Baranger, M Poncelet
16th World Congress on Computational Mechanics, 2024
2024
Apprentissage non-supervisé de lois de comportement nonlinéaires avec réseau de neurones thermodynamiquement consistent par minimisation de l'erreur en relation de comportement …
A Benady, E Baranger, L Chamoin
2024
Physics-Augmented Neural Networks for Constitutive Modeling: Toward an Application for Structural Health Monitoring
A Benady, E Baranger, L Chamoin
The 9th European Congress on Computational Methods in Applied Sciences and …, 2024
2024
A modified Constitutive Relation Error framework to learn nonlinear constitutive laws using physics-augmented Neural Networks
A Benady, L Chamoin, E Baranger
IACM Mechanistic Machine Learning and Digital Engineering for Computational …, 2023
2023
Scientific machine learning and physics-augmented neural networks for hybrid digital twins
A Benady, F Lehmann, A Pulikkathodi, E Baranger, L Chamoin, F Gatti, ...
Journée du GDR I-GAIA, 2023
2023
Physics-augmented neural networks for constitutive modeling: training with the modified Constitutive Relation Error
A Benady, E Baranger, L Chamoin
MORTech 2023–6th International Workshop on Model Reduction Techniques, 2023
2023
Réseaux de neurones informés par la physique pour l’apprentissage de lois de comportement.
A Benady, L Chamoin, E Baranger
25ème Congrès Français de Mécanique 2022, 2022
2022
Intégrer les connaissances physiques dans les réseaux de neurones: application à l’apprentissage des lois de comportement matériaux à partir de mesures de déformation par …
A Benady, L Chamoin, E Baranger
La revue 3EI 109, 2022
2022
NN-MCRE: Amodified CONSTITUTIVE RELATION ERROR
A Benady, E Baranger, L Chamoin
系统目前无法执行此操作,请稍后再试。
文章 1–19