关注
Faruk Ergen
Faruk Ergen
在 ogr.inonu.edu.tr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Development of BIM software with quantity take-off and visualization capabilities
F Ergen, ÖH Bettemir
Journal of Construction Engineering, Management & Innovation 5 (1), 1-14, 2022
142022
Investigation of optimized machine learning models with PSO for forecasting the shear capacity of steel fiber-reinforced SCC beams with/out stirrups
F Ergen, M Katlav
Journal of Building Engineering 83, 108455, 2024
122024
Data-driven moment-carrying capacity prediction of hybrid beams consisting of UHPC-NSC using machine learning-based models
M Katlav, F Ergen
Structures 59, 105733, 2024
92024
Investigating the applicability of deep learning and machine learning models in predicting the structural performance of V-shaped RC folded plates
M Katlav, F Ergen, K Turk, P Turgut
Materials Today Communications 38, 108141, 2024
52024
Development of ontological algorithms for exact QTO of reinforced concrete construction items
F Ergen, ÖH Bettemir
Structures 60, 105907, 2024
42024
Improved forecasting of the compressive strength of ultra‐high‐performance concrete (UHPC) via the CatBoost model optimized with different algorithms
M Katlav, F Ergen
Structural Concrete, 2024
32024
Estimation of the shear strength of UHPC beams via interpretable deep learning models: Comparison of different optimization techniques
F Ergen, M Katlav
Materials Today Communications, 109394, 2024
22024
Machine and deep learning-based prediction of flexural moment capacity of ultra-high performance concrete beams with/out steel fiber
F Ergen, M Katlav
Asian Journal of Civil Engineering, 1-22, 2024
22024
Development of BIM-based prototype software for the accurate quantity take-off calculation of rough construction items
F Ergen, ÖH Bettemir
Gümüşhane University Journal of Science and Technology, 2023
22023
Yüksek doğrulukta kaba inşaat kalemlerinin metrajını hesaplayan YBM tabanlı prototip yazılımın geliştirilmesi
F Ergen, ÖH Bettemir
Gümüşhane Üniversitesi Fen Bilimleri Dergisi 13 (1), 86-105, 2023
12023
AI-driven design for the compressive strength of ultra-high performance geopolymer concrete (UHPGC): From explainable ensemble models to the graphical user interface
M Katlav, F Ergen, I Donmez
Materials Today Communications, 109915, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–11