Boosting the margin: A new explanation for the effectiveness of voting methods P Bartlett, Y Freund, WS Lee, RE Schapire The annals of statistics 26 (5), 1651-1686, 1998 | 3907 | 1998 |
New support vector algorithms B Schölkopf, AJ Smola, RC Williamson, PL Bartlett Neural computation 12 (5), 1207-1245, 2000 | 3736 | 2000 |
Learning the kernel matrix with semidefinite programming GRG Lanckriet, N Cristianini, P Bartlett, LE Ghaoui, MI Jordan Journal of Machine learning research 5 (Jan), 27-72, 2004 | 3122 | 2004 |
Rademacher and Gaussian complexities: Risk bounds and structural results PL Bartlett, S Mendelson Journal of Machine Learning Research 3 (Nov), 463-482, 2002 | 2944 | 2002 |
Neural network learning: Theoretical foundations M Anthony, PL Bartlett, PL Bartlett cambridge university press 9, 8, 1999 | 2556 | 1999 |
For valid generalization the size of the weights is more important than the size of the network P Bartlett Advances in neural information processing systems 9, 1996 | 1883 | 1996 |
A framework for learning predictive structures from multiple tasks and unlabeled data. RK Ando, T Zhang, P Bartlett Journal of machine learning research 6 (11), 2005 | 1775 | 2005 |
Convexity, classification, and risk bounds PL Bartlett, MI Jordan, JD McAuliffe Journal of the American Statistical Association 101 (473), 138-156, 2006 | 1699 | 2006 |
Boosting algorithms as gradient descent L Mason, J Baxter, P Bartlett, M Frean Advances in neural information processing systems 12, 1999 | 1515 | 1999 |
Byzantine-robust distributed learning: Towards optimal statistical rates D Yin, Y Chen, R Kannan, P Bartlett International conference on machine learning, 5650-5659, 2018 | 1374 | 2018 |
Spectrally-normalized margin bounds for neural networks PL Bartlett, DJ Foster, MJ Telgarsky Advances in neural information processing systems 30, 2017 | 1257 | 2017 |
Infinite-horizon policy-gradient estimation J Baxter, PL Bartlett journal of artificial intelligence research 15, 319-350, 2001 | 1219 | 2001 |
RL: Fast Reinforcement Learning via Slow Reinforcement Learning Y Duan, J Schulman, X Chen, PL Bartlett, I Sutskever, P Abbeel arXiv preprint arXiv:1611.02779, 2016 | 1108 | 2016 |
Local rademacher complexities PL Bartlett, O Bousquet, S Mendelson | 911 | 2005 |
Benign overfitting in linear regression PL Bartlett, PM Long, G Lugosi, A Tsigler Proceedings of the National Academy of Sciences 117 (48), 30063-30070, 2020 | 855 | 2020 |
Structural risk minimization over data-dependent hierarchies J Shawe-Taylor, PL Bartlett, RC Williamson, M Anthony IEEE transactions on Information Theory 44 (5), 1926-1940, 1998 | 736 | 1998 |
Learning Rates for Q-learning. E Even-Dar, Y Mansour, P Bartlett Journal of machine learning Research 5 (1), 2003 | 622 | 2003 |
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. E Greensmith, PL Bartlett, J Baxter Journal of Machine Learning Research 5 (9), 2004 | 603 | 2004 |
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks PL Bartlett, N Harvey, C Liaw, A Mehrabian Journal of Machine Learning Research 20 (63), 1-17, 2019 | 600 | 2019 |
Classification with a Reject Option using a Hinge Loss. PL Bartlett, MH Wegkamp Journal of Machine Learning Research 9 (8), 2008 | 573 | 2008 |