关注
Michael Fop
Michael Fop
Lecturer/Assistant Professor University College Dublin
在 ucd.ie 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
mclust 5: clustering, classification and density estimation using Gaussian finite mixture models
L Scrucca, M Fop, TB Murphy, AE Raftery
The R journal 8 (1), 289, 2016
27092016
Variable selection methods for model-based clustering
M Fop, TB Murphy
1272018
mclust: Gaussian mixture modelling for model-based clustering, classification, and density estimation
C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop
R package version 5, 2021
64*2021
Variable selection for latent class analysis with application to low back pain diagnosis
M Fop, KM Smart, TB Murphy
The Annals of Applied Statistics, 2080-2110, 2017
622017
Package ‘mclust’
C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop, ML Scrucca
392012
Model-based clustering with sparse covariance matrices
M Fop, TB Murphy, L Scrucca
Statistics and Computing 29 (4), 791-819, 2019
302019
mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016; 8 (1): 289–317. doi: 10.32614
L Scrucca, M Fop, TB Murphy, AE Raftery
RJ-2016-021.[Europe PMC free article][Abstract][CrossRef][Google Scholar], 0
20
Can the Y balance test identify those at risk of contact or non-contact lower extremity injury in adolescent and collegiate Gaelic games?
S O’Connor, N McCaffrey, EF Whyte, M Fop, B Murphy, K Moran
Journal of science and medicine in sport 23 (10), 943-948, 2020
182020
Is poor hamstring flexibility a risk factor for hamstring injury in Gaelic games?
S O’Connor, N McCaffrey, EF Whyte, M Fop, B Murphy, KA Moran
Journal of Sport Rehabilitation 28 (7), 677-681, 2019
182019
Mclust: Gaussian mixture modelling for model-based clustering, classification, and density estimation, R package Version 5.3
C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop
R-project. org/package= mclust, 2017
172017
Model-based clustering for multidimensional social networks
S D’Angelo, M Alfò, M Fop
Journal of the Royal Statistical Society Series A: Statistics in Society 186 …, 2023
11*2023
A stochastic block model for interaction lengths
R Rastelli, M Fop
Advances in Data Analysis and Classification 14 (2), 485-512, 2020
9*2020
mclust: Normal Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation, 2016
C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop
URL http://CRAN. R-project. org/package= mclust. R package version 5, 0
6
R package ‘mclust’: Gaussian mixture modelling for model-based clustering, classification, and density estimation
C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop
The Comprehensive R Archive Network, 2016
52016
Analysis of in vivo skin anisotropy using elastic wave measurements and Bayesian modelling
M Nagle, S Price, A Trotta, M Destrade, M Fop, A Ní Annaidh
Annals of Biomedical Engineering 51 (8), 1781-1794, 2023
42023
Group-wise shrinkage estimation in penalized model-based clustering
A Casa, A Cappozzo, M Fop
Journal of Classification 39 (3), 648-674, 2022
42022
A latent shrinkage position model for binary and count network data
XY Gwee, IC Gormley, M Fop
Bayesian Analysis 1 (1), 1-29, 2023
32023
Unobserved classes and extra variables in high-dimensional discriminant analysis
M Fop, PA Mattei, C Bouveyron, TB Murphy
Advances in Data Analysis and Classification 16 (1), 55-92, 2022
32022
A Gaussian process approach for rapid evaluation of skin tension
M Nagle, HC Broderick, C Vedel, M Destrade, M Fop, AN Annaidh
Acta Biomaterialia, 2024
12024
Model-based Clustering for Network Data via a Latent Shrinkage Position Cluster Model
XY Gwee, IC Gormley, M Fop
arXiv preprint arXiv:2310.03630, 2023
12023
系统目前无法执行此操作,请稍后再试。
文章 1–20