Attention u-net: Learning where to look for the pancreas O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 2018 | 5779 | 2018 |
Attention gated networks: Learning to leverage salient regions in medical images J Schlemper, O Oktay, M Schaap, M Heinrich, B Kainz, B Glocker, ... Medical image analysis 53, 197-207, 2019 | 1468 | 2019 |
Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation O Oktay, E Ferrante, K Kamnitsas, M Heinrich, W Bai, J Caballero, ... IEEE transactions on medical imaging 37 (2), 384-395, 2017 | 795 | 2017 |
Automated cardiovascular magnetic resonance image analysis with fully convolutional networks W Bai, M Sinclair, G Tarroni, O Oktay, M Rajchl, G Vaillant, AM Lee, ... Journal of cardiovascular magnetic resonance 20 (1), 65, 2018 | 666 | 2018 |
Semi-supervised learning for network-based cardiac MR image segmentation W Bai, O Oktay, M Sinclair, H Suzuki, M Rajchl, G Tarroni, B Glocker, ... Medical Image Computing and Computer-Assisted Intervention− MICCAI 2017 …, 2017 | 473 | 2017 |
Deepcut: Object segmentation from bounding box annotations using convolutional neural networks M Rajchl, MCH Lee, O Oktay, K Kamnitsas, J Passerat-Palmbach, W Bai, ... IEEE transactions on medical imaging 36 (2), 674-683, 2016 | 459 | 2016 |
Attention u-net: Learning where to look for the pancreas. arXiv O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999 10, 2018 | 354 | 2018 |
Multi-input cardiac image super-resolution using convolutional neural networks O Oktay, W Bai, M Lee, R Guerrero, K Kamnitsas, J Caballero, ... Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th …, 2016 | 280 | 2016 |
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks R Guerrero, C Qin, O Oktay, C Bowles, L Chen, R Joules, R Wolz, ... NeuroImage: Clinical 17, 918-934, 2018 | 221 | 2018 |
Attention u-net: learning where to look for the pancreas (2018) O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 1804 | 193 | 1804 |
Evaluating reinforcement learning agents for anatomical landmark detection A Alansary, O Oktay, Y Li, L Le Folgoc, B Hou, G Vaillant, K Kamnitsas, ... Medical image analysis 53, 156-164, 2019 | 188 | 2019 |
Making the Most of Text Semantics to Improve Biomedical Vision--Language Processing B Boecking, N Usuyama, S Bannur, DC Castro, A Schwaighofer, S Hyland, ... European Conference on Computer Vision (ECCV), 2022 | 151 | 2022 |
Recurrent neural networks for aortic image sequence segmentation with sparse annotations W Bai, H Suzuki, C Qin, G Tarroni, O Oktay, PM Matthews, D Rueckert Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018 | 142 | 2018 |
Adversarial and perceptual refinement for compressed sensing MRI reconstruction M Seitzer, G Yang, J Schlemper, O Oktay, T Würfl, V Christlein, T Wong, ... Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018 | 131 | 2018 |
Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study R Robinson, VV Valindria, W Bai, O Oktay, B Kainz, H Suzuki, ... Journal of Cardiovascular Magnetic Resonance 21, 1-14, 2019 | 120 | 2019 |
Attention-gated networks for improving ultrasound scan plane detection J Schlemper, O Oktay, L Chen, J Matthew, C Knight, B Kainz, B Glocker, ... arXiv preprint arXiv:1804.05338, 2018 | 119 | 2018 |
Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography O Bernard, JG Bosch, B Heyde, M Alessandrini, D Barbosa, ... IEEE transactions on medical imaging 35 (4), 967-977, 2015 | 112 | 2015 |
Image-and-spatial transformer networks for structure-guided image registration MCH Lee, O Oktay, A Schuh, M Schaap, B Glocker Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd …, 2019 | 94 | 2019 |
OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions MP Heinrich, O Oktay, N Bouteldja Medical image analysis 54, 1-9, 2019 | 82 | 2019 |
Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling C Biffi, O Oktay, G Tarroni, W Bai, A De Marvao, G Doumou, M Rajchl, ... Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018 | 82 | 2018 |