Quantifying Waddington’s epigenetic landscape: a comparison of single-cell potency measures J Shi, AE Teschendorff, W Chen, L Chen, T Li Briefings in bioinformatics 21 (1), 248-261, 2020 | 58 | 2020 |
Towards a critical transition theory under different temporal scales and noise strengths J Shi, T Li, L Chen Physical Review E 93 (3), 032137, 2016 | 30 | 2016 |
On the Mathematics of RNA Velocity I: Theoretical Analysis T Li, J Shi, Y Wu, P Zhou CSIAM Trans. Appl. Math. 2 (1), 1-55, 2020 | 27 | 2020 |
Dynamics-based data science in biology J Shi, K Aihara, L Chen National Science Review 8 (5), nwab029, 2021 | 20 | 2021 |
Quantifying pluripotency landscape of cell differentiation from scRNA-seq data by continuous birth-death process J Shi, T Li, L Chen, K Aihara PLoS computational biology 15 (11), e1007488, 2019 | 17 | 2019 |
Detecting direct associations in a network by information theoretic approaches J Shi, J Zhao, T Li, L Chen Science China Mathematics 62, 823-838, 2019 | 16 | 2019 |
Quantifying direct dependencies in biological networks by multiscale association analysis J Shi, J Zhao, X Liu, L Chen, T Li IEEE/ACM transactions on computational biology and bioinformatics 17 (2 …, 2018 | 14 | 2018 |
Energy landscape decomposition for cell differentiation with proliferation effect J Shi, K Aihara, T Li, L Chen National Science Review 9 (8), nwac116, 2022 | 12 | 2022 |
Criticality in the Healthy Brain J Shi, K Kirihara, M Tada, M Fujioka, K Usui, D Koshiyama, T Araki, ... Frontiers in Network Physiology 1, 755685, 2022 | 12 | 2022 |
Embedding entropy: a nonlinear measure of dynamical causality J Shi, L Chen, K Aihara Journal of The Royal Society Interface 19 (188), 20210766, 2022 | 9 | 2022 |
Mean-field analysis of Stuart–Landau oscillator networks with symmetric coupling and dynamical noise Y Li, J Shi, K Aihara Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (6), 2022 | 1 | 2022 |
Supplementary Information for “Embedding entropy: a nonlinear measure of dynamical causality” J Shi, L Chen, K Aihara Figshare, 2022 | 1 | 2022 |
Detecting dynamical causality via intervened reservoir computing J Zhao, Z Gan, R Huang, C Guan, J Shi, S Leng Communications Physics 7 (1), 232, 2024 | | 2024 |
Deciphering interventional dynamical causality from non-intervention systems J Shi, Y Li, J Zhao, S Leng, K Aihara, L Chen, W Lin arXiv preprint arXiv:2407.01621, 2024 | | 2024 |
iSORT: An Integrative Method for Reconstructing Spatial Organization of Cells using Transfer Learning Y Tan, A Wang, W Lin, Y Yan, J Shi bioRxiv, 2024.02. 28.582493, 2024 | | 2024 |
Detecting dynamical causality by intersection cardinal concavity P Tao, Q Wang, J Shi, X Hao, X Liu, B Min, Y Zhang, C Li, H Cui, L Chen Fundamental Research, 2023 | | 2023 |
Publisher’s Note:“Mean-field analysis of Stuart–Landau oscillator networks with symmetric coupling and dynamical noise”[Chaos 32, 063114 (2022)] Y Li, J Shi, K Aihara Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (8), 2022 | | 2022 |
关于临界现象和强相关网络推断的多尺度建模与分析 (Multiscale modeling and analysis of critical transitions and network inference with strong connections) J Shi 北京大学博士学位论文(PhD thesis, in Chinese), 2017 | | 2017 |
Supplementary Information for “Energy landscape decomposition for cell differentiation with proliferation effect” J Shi, K Aihara, T Li, L Chen | | |