Error-backpropagation in temporally encoded networks of spiking neurons SM Bohte, JN Kok, H La Poutre Neurocomputing 48 (1), 17-37, 2002 | 1418* | 2002 |
Conditional time series forecasting with convolutional neural networks A Borovykh, S Bohte, CW Oosterlee arXiv preprint arXiv:1703.04691, 2017 | 641 | 2017 |
Handbook of natural computing T Bäck, JN Kok, G Rozenberg Springer, Heidelberg, 2012 | 550 | 2012 |
Artificial neural networks as models of neural information processing M Van Gerven, S Bohte Frontiers in Computational Neuroscience 11, 114, 2017 | 504 | 2017 |
Computing with spiking neuron networks H Paugam-Moisy, S Bohte Handbook of Natural Computing, 40p. Springer, Heidelberg, 2009 | 406 | 2009 |
Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks SM Bohte, H La Poutré, JN Kok IEEE Transactions on neural networks 13 (2), 426-435, 2002 | 301 | 2002 |
The evidence for neural information processing with precise spike-times: A survey SM Bohte Natural Computing 3, 195-206, 2004 | 213 | 2004 |
Adaptive resource allocation for efficient patient scheduling IB Vermeulen, SM Bohte, SG Elkhuizen, H Lameris, PJM Bakker, ... Artificial intelligence in medicine 46 (1), 67-80, 2009 | 177 | 2009 |
Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks B Yin, F Corradi, SM Bohté Nature Machine Intelligence 3 (10), 905-913, 2021 | 170 | 2021 |
Method and system for automated marketing of attention area content L Poutre, J Antonius, SM Bohte, EH Gerding, FW Bomhof, J Jonker, ... US Patent App. 20,030/018,539, 2002 | 165 | 2002 |
Pricing options and computing implied volatilities using neural networks S Liu, CW Oosterlee, SM Bohte Risks 7 (1), 16, 2019 | 159 | 2019 |
Sparse computation in adaptive spiking neural networks D Zambrano, R Nusselder, HS Scholte, SM Bohté Frontiers in neuroscience 12, 987, 2019 | 131* | 2019 |
Dilated convolutional neural networks for time series forecasting A Borovykh, S Bohte, CW Oosterlee Journal of Computational Finance 29, 73-101, 2018 | 118 | 2018 |
Spiking neural networks: Principles and challenges. A Grüning, SM Bohte ESANN, 2014 | 112 | 2014 |
Effective and efficient computation with multiple-timescale spiking recurrent neural networks B Yin, F Corradi, SM Bohté International Conference on Neuromorphic Systems 2020, 1-8, 2020 | 101 | 2020 |
Spike-prop: error-backpropagation in multi-layer networks of spiking neurons SM Bohte, JN Kok, H La Poutre Neurocomputing 48 (1-4), 17-37, 2002 | 82 | 2002 |
Spiking neural networks SM Bohte | 78 | 2003 |
How attention can create synaptic tags for the learning of working memories in sequential tasks JO Rombouts, SM Bohte, PR Roelfsema PLoS computational biology 11 (3), e1004060, 2015 | 75 | 2015 |
Visualizing a joint future of neuroscience and neuromorphic engineering F Zenke, SM Bohté, C Clopath, IM Comşa, J Göltz, W Maass, ... Neuron 109 (4), 571-575, 2021 | 70 | 2021 |
The effects of pair-wise and higher-order correlations on the firing rate of a postsynaptic neuron SM Bohté, H Spekreijse, PR Roelfsema Neural Computation 12 (1), 153-179, 2000 | 69 | 2000 |