关注
Guy Shalev
Guy Shalev
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
F Kratzert, D Klotz, G Shalev, G Klambauer, S Hochreiter, G Nearing
Hydrology and Earth System Sciences 23 (12), 5089-5110, 2019
544*2019
Deep learning rainfall-runoff predictions of extreme events
J Frame, F Kratzert, D Klotz, M Gauch, G Shelev, O Gilon, LM Qualls, ...
(No Title), 2021
1312021
Flood forecasting with machine learning models in an operational framework
S Nevo, E Morin, A Gerzi Rosenthal, A Metzger, C Barshai, D Weitzner, ...
Hydrology and Earth System Sciences 26 (15), 4013-4032, 2022
1062022
Caravan-A global community dataset for large-sample hydrology
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
Scientific Data 10 (1), 61, 2023
78*2023
Hybrid forecasting: blending climate predictions with AI models
LJ Slater, L Arnal, MA Boucher, AYY Chang, S Moulds, C Murphy, ...
Hydrology and earth system sciences 27 (9), 1865-1889, 2023
73*2023
Modeling COVID-19 on a network: super-spreaders, testing and containment
O Reich, G Shalev, T Kalvari
MedRxiv, 2020.04. 30.20081828, 2020
362020
Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
GS Nearing, D Klotz, AK Sampson, F Kratzert, M Gauch, JM Frame, ...
Hydrology and earth system sciences discussions 2021, 1-25, 2021
312021
ML for flood forecasting at scale
S Nevo, V Anisimov, G Elidan, R El-Yaniv, P Giencke, Y Gigi, A Hassidim, ...
arXiv preprint arXiv:1901.09583, 2019
312019
Global prediction of extreme floods in ungauged watersheds
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
Nature 627 (8004), 559-563, 2024
28*2024
On the Fourier Entropy Influence conjecture for extremal classes
G Shalev
arXiv preprint arXiv:1806.03646, 2018
92018
Accurate hydrologic modeling using less information
G Shalev, R El-Yaniv, D Klotz, F Kratzert, A Metzger, S Nevo
arXiv preprint arXiv:1911.09427, 2019
62019
ML-based flood forecasting: Advances in scale, accuracy and reach
S Nevo, G Elidan, A Hassidim, G Shalev, O Gilon, G Nearing, Y Matias
arXiv preprint arXiv:2012.00671, 2020
52020
Towards global remote discharge estimation: Using the few to estimate the many
Y Gigi, G Elidan, A Hassidim, Y Matias, Z Moshe, S Nevo, G Shalev, ...
arXiv preprint arXiv:1901.00786, 2019
52019
Towards flood warnings everywhere-data-driven rainfall-runoff modeling at global scale
F Kratzert, M Gauch, D Klotz, A Metzger, G Nearing, G Shalev, S Shenzis, ...
AGU Fall Meeting Conference Abstracts, Pp. GC12A 4, 2022
32022
Reproducing flash flood warnings with Machine Learning
O Zlydenko, D Cohen, M Gauch, AG Rosenthal, F Kratzert, G Nearing, ...
EGU24, 2024
2024
Deep Learning for Spatially Distributed Rainfall–Runoff Modeling
M Gauch, F Kratzert, V Dube, O Gilon, D Klotz, A Metzger, G Nearing, ...
EGU24, 2024
2024
GRDC-Caravan: extending the original dataset with data from the Global Runoff Data Centre
C Färber, H Plessow, S Mischel, F Kratzert, N Addor, G Shalev, U Looser
EGU24, 2024
2024
Living among Artiodactyls-Current status and future plans of the Caravan dataset
F Kratzert, N Addor, G Shalev, O Gilon
EGU24, 2024
2024
Terrestrial Information Everywhere-An AI-Based Land Surface Model
S Shenzis, GS Nearing, TY Tekalign, G Shalev, O Gilon
AGU23, 2023
2023
From Hindcast to Forecast with Deep Learning Streamflow Models
G Nearing, M Gauch, D Klotz, F Kratzert, A Metzger, G Shalev, S Shenzis, ...
EGU General Assembly Conference Abstracts, EGU-16974, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20