Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk M Möller, H Gerstmann, F Gao, TC Dahms, M Förster Catena 150, 192-205, 2017 | 51 | 2017 |
Synthetic RapidEye data used for the detection of area-based spruce tree mortality induced by bark beetles H Latifi, T Dahms, B Beudert, M Heurich, C Kübert, S Dech GIScience & Remote Sensing 55 (6), 839-859, 2018 | 28 | 2018 |
Spatiotemporal fusion modelling using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria MS Dhillon, T Dahms, C Kübert-Flock, I Steffan-Dewenter, J Zhang, ... Remote Sensing 14 (3), 677, 2022 | 25 | 2022 |
Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape MS Dhillon, T Dahms, C Kuebert-Flock, T Rummler, J Arnault, ... Frontiers in Remote Sensing 3, 1010978, 2023 | 21 | 2023 |
Modelling crop biomass from synthetic remote sensing time series: Example for the DEMMIN test site, Germany MS Dhillon, T Dahms, C Kuebert-Flock, E Borg, C Conrad, T Ullmann Remote Sensing 12 (11), 1819, 2020 | 21 | 2020 |
Seasonal-based analysis of vegetation response to environmental variables in the mountainous forests of Western Himalaya using Landsat 8 data S Khare, SK Ghosh, H Latifi, S Vijay, T Dahms International journal of remote sensing 38 (15), 4418-4442, 2017 | 21 | 2017 |
Important variables of a rapideye time series for modelling biophysical parameters of winter wheat T Dahms, S Seissiger, E Borg, H Vajen, B Fichtelmann, C Conrad Photogramm. Fernerkund. Geoinf 2016, 285-299, 2016 | 18 | 2016 |
Cabbage whiteflies colonise Brassica vegetables primarily from distant, upwind source habitats M Ludwig, H Ludwig, C Conrad, T Dahms, R Meyhöfer Entomologia Experimentalis et Applicata 167 (8), 713-721, 2019 | 16 | 2019 |
Modelling biophysical parameters of maize using Landsat 8 time series T Dahms, S Seissiger, C Conrad, E Borg The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2016 | 12 | 2016 |
Evaluation of MODIS, Landsat 8 and Sentinel-2 data for accurate crop yield predictions: A case study using STARFM NDVI in Bavaria, Germany MS Dhillon, C Kübert-Flock, T Dahms, T Rummler, J Arnault, ... Remote Sensing 15 (7), 1830, 2023 | 11 | 2023 |
Impact of STARFM on crop yield predictions: fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany MS Dhillon, T Dahms, C Kübert-Flock, A Liepa, T Rummler, J Arnault, ... Remote Sensing 15 (6), 1651, 2023 | 6 | 2023 |
Derivation of biophysical parameters from fused remote sensing data D Thorsten, C Christopher, DK Babu, S Marco, B Erik 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017 | 6 | 2017 |
Joint Experiment for Crop Assessment and Monitoring (JECAM)-Test Site DEMMIN 2018 E Borg, C Conrad, S Truckenbrodt, C Hüttich, N Ahmadian, T Dahms, ... | 3 | 2018 |
Phenological NDVI time series for the dynamic derivation of soil coverage information M Möller, H Gerstmann, TC Dahms 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017 | 2 | 2017 |
Mapping and monitoring locust habitats in the Aral sea region based on satellite earth observation data M Bolkart, T Dahms, C Conrad, A Latchininsky, F Löw | 2 | 2016 |
Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands H Mollenhauer, E Borg, B Pflug, B Fichtelmann, T Dahms, S Lorenz, ... Remote Sensing 15 (19), 4663, 2023 | 1 | 2023 |
Semi-autonomous remote sensing time series generation tool DK Babu, C Kaufmann, M Schmidt, T Dahms, C Conrad Image and Signal Processing for Remote Sensing XXIII 10427, 99-113, 2017 | 1 | 2017 |
Classification of agricultural land use and derivation of biophysical parameter using SAR and optical data P Knöfel, T Dahms, E Borg, C Conrad Gesellschaft für Informatik eV, 2017 | 1 | 2017 |
Impact on quality and processing time due to change in pre-processing operation sequence on moderate resolution satellite images DK Babu, M Schmidt, T Dahms, C Conrad IAC-16-B1. 4.2, 1-8, 2016 | 1 | 2016 |
Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands. Remote Sens. 2023, 15, 4663 H Mollenhauer, E Borg, B Pflug, B Fichtelmann, T Dahms, S Lorenz, ... | | 2023 |